Project description:Cardiac hypertrophy can lead to heart failure, and is induced either by physiological stimuli eg postnatal development, chronic exrcise training or pathological stimuli eg pressure or volume overload. This data set looks at microRNA profiles in mouse models to examine whether phosphoinositide 3-kinase (p110 alpha isoform) activity is critical for the maintenance of cardiac function and long term survival in a seeting of heart failure (myocardial infarction). The significance and expected outcome are to recognise genes involved in models of heart failure and attempt to examine underlying regulator pathways involved in possible cardica maintenance in the PI3K mouse model. The matching mRNA gene expression profile (GSE7487) is examined to look for mRNA and microRNA interactions. miRNA expression correlates directly with cardiac function. PI3K regulon ameliorates cardiac stress. Keywords: microRNA profiling, regulatory pathway discovery, genotype comparison
Project description:Cardiac hypertrophy can lead to heart failure, and is induced either by physiological stimuli eg postnatal development, chronic exercise training or pathological stimuli eg pressure or volume overload. Majority of new therapies for heart failure has mixed outcomes. A combined mouse model and oligo-array approach are used to examine whether phosphoinositide 3-kinase (p110-alpha isoform) activity is critical for maintenance of cardiac function and long-term survival in a setting of heart failure. The significance and expected outcome are to recognise genes involved in models of heart failure ie pathological- vs physiology-hypertrophy, and examine the molecular mechanisms responsible for such activity. Growth of the heart can be induced by physiological stimuli e.g., postnatal development, chronic exercise training, or pathological stimuli e.g., pressure or volume overload. Physiological hypertrophy (“good”) is characterised by a normal organisation of cardiac structure, and normal or enhanced cardiac function. In comparison, pathological hypertrophy (”bad”) is associated with fibrosis, cardiac dysfunction, and increased morbidity and mortality. The mechanistic process which allows the heart to enlarge in response to physiological stimuli while maintaining normal or enhanced function is of great clinical relevance because one potential therapeutic strategy is to inhibit the pathological growth process while augmenting the physiological growth process. One of the major process that regulate heart size is by phosphoinositide 3-kinase (PI3K). Thus the end goal of this project is to determine whether the p110 alpha isoform of PI3K could be a potential tool for augmenting physiological growth and improving cardiac function of the failing diseased heart, and to examine the underlying mechanisms responsible. Keywords: Disease progression analysis
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Skeletal muscle mass is an important determinant of whole-body glucose disposal. We here show that mice (M-PDK1KO mice) with skeletal muscle–specific deficiency of 3'-phosphoinositide–dependent kinase 1 (PDK1), a key component of the phosphatidylinositol 3-kinase (PI3K) signaling pathway, manifest a reduced skeletal muscle mass under the static condition as well as impairment of exercise load–induced muscle hypertrophy. Whereas exercise load-induced changes in gene expression were not affected, the phosphorylation of ribosomal protein S6 kinase (S6K) and S6 induced by exercise load was attenuated in skeletal muscle of M-PDK1KO mice, suggesting that PDK1 regulates muscle hypertrophy not through changes in gene expression but through stimulation of protein synthesis via the S6K-S6 axis.