Project description:Pressure overload-induced cardiac hypertrophy was examined in IL-18 knockout and littermate control mice. Experiment Overall Design: 4 groups with RNA pooled from 5-6 per group. Role of IL-18 on gene expression in cardiac hypertrophy induced by pressure overload (transaortic constriction)
Project description:Expression profiles at various time points after surgical intervention for pressure-overload induced cardiac hypertrophy and failure.
Project description:Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. The role of cardiac long non-coding RNAs in cardiac hypertrophy and cardiomyopathy is not well understood. lincRNA-p21 was induced in mouse and human cardiomyopathy tissue. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 pathway. Mechanistically, lincRNA-p21 bound to the scaffold protein KAP1. lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulated pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. Importantly, GapmeR ASO depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21.
Project description:Pathological cardiac hypertrophy is a major risk factor for the development of heart failure and sudden cardiac death, yet the molecular mechanism of cardiac hypertrophy is not fully understood. Recently, we found that the expression of Lin28a, a RNA-binding protein, was significantly upregulated during the early stages of cardiac hypertrophy. Interestingly, cardiac specific conditional deletion of Lin28a blunted pressure overload-induced cardiac hypertrophic responses. Given that Lin28a can bind to diverse mRNA to regulate their abundance and/or translation, we conducted RNA-seq to profile the cardiac transcriptome alteration without Lin28a under pressure overload. It showed that metabolic pathways, including glycolysis and biosynthetic pathway, were remarkedly affected. Thus, our study identifies Lin28a as a crucial regulator of cardiac hypertrophy via its role in metabolic programming.