Project description:To find which signaling is activated in chronic inflammation, we tried to induce chronic skin and pancreas inflammation compared to normal skin and pancreas.
Project description:Acute pancreatitis (AP) is acute inflammation of the pancreas, mainly caused by gallstones and alcohol, driven by changes in communication between cells. Heparin-binding proteins (HBPs) play a central role in cell communication. Therefore, we used heparin affinity proteomics to identify extracellular HBPs in pancreas and plasma of normal mice and in a caerulein mouse model of AP. Many new extracellular HBPs (360) were discovered in the pancreas, taking the total number of HBPs known to 786. Extracellular pancreas HBPs form highly interconnected protein-protein interaction networks in both normal pancreas (NP) and AP. Thus, HBPs represent an important set of extracellular proteins with significant regulatory potential in the pancreas. HBPs in NP are associated with biological functions such as molecular transport and cellular movement that underlie pancreatic homeostasis. However, in AP HBPs are associated with additional processes such as acute phase response signalling, complement activation and mitochondrial dysfunction. Plasma HBPs in AP included known AP biomarkers such as serum amyloid A, as well as emerging targets such as histone H2A. Pancreas HBPs are extracellular and so easily accessible and are potential drug targets in AP, whereas plasma HBPs represent potential biomarkers for AP.
Project description:This SuperSeries is composed of the following subset Series: GSE12248: Genetic architecture of murine skin inflammation and tumor susceptibility GSE21247: Network Analysis of Skin Tumor Progression Identifies a Rewired Genetic Architecture Affecting Inflammation and Tumor Susceptibility (carcinomas) GSE21263: Network Analysis of Skin Tumor Progression Identifies a Rewired Genetic Architecture Affecting Inflammation and Tumor Susceptibility (papillomas) GSE26273: Network Analysis of Skin Tumor Progression Identifies a Rewired Genetic Architecture Affecting Inflammation and Tumor Susceptibility (aCGH) Refer to individual Series
Project description:Malassezia forms the dominant eukaryotic microbial community on the human skin. The Malassezia genus possesses a repertoire of secretory hydrolytic enzymes involved in protein and lipid metabolism which alter the external cutaneous environment. The exact role of most Malassezia secreted enzymes, including those in interaction with the epithelial surface, are not well characterized. In this study, we compared the expression level of secreted proteases, lipases, phospholipases, and sphingomyelinases of Malassezia globosa in healthy subjects and seborrheic dermatitis or atopic dermatitis patients. We observed upregulated gene expression of the previously characterized secretory aspartyl protease MgSAP1 in both the lesional and non-lesional skin sites of affected compared to healthy subjects. To explore the functional roles of MgSAP1 in skin disease, we generated a knockout mutant of the homologous protease MfSAP1 in the genetically tractable Malassezia furfur. We observed the loss of MfSAP1 resulted in dramatic changes in the cell adhesion and dispersal in both culture and a human 3D reconstituted epidermis model. In a murine model of Malassezia colonization, we further demonstrated MfSAP1 contributes to inflammation as observed by reduced edema and myeloid pustule formation with the knockout mutant versus wildtype. Taken together, we show that this dominant secretory Malassezia aspartyl protease has an important role in enabling a planktonic cellular state that can potentially aid in colonization and additionally as a virulence factor in barrier-compromised skin, further highlighting the importance of considering the contextual relevance when evaluating the functions of secreted microbial enzymes.
Project description:Cell conditioned medium from human pancreatic cancer cell lines MiaPaCa-2, AsPC-1, primary pancreatic cell lines as well as human FFPE tissue samples from pancreatic ductal adenocarcinoma (PDAC), chronic pancreatitis (CP), ampullary cancer, non-malignant adjacent pancreas and normal pancreas were analyzed via targeted (SRM, PRM) and/or explorative (DIA) mass spectrometry.
Project description:Fibroblasts are highly heterogenous and can exhibit distinct phenotypes depending on their activation state. To evaluate the specific phenotype of fibroblasts involved in inflammation versus wound-induced skin tumorigenesis, a genome-wide expression study was performed comparing gene expression profiles of ‘normal’, ‘inflammatory’ and ‘papilloma-associated’ fibroblasts.
Project description:Under steady state conditions, the immune system is poised to sense and respond to the microbiota. As such, immunity to the microbiota, including T cell responses, is expected to precede any inflammatory trigger. How this pool of preformed microbiota-specific T cells contributes to tissue pathologies remains unclear. Here, using an experimental model of psoriasis, we show that recall responses to commensal skin fungi can significantly aggravate tissue inflammation. Enhanced pathology caused by fungi pre-exposure depends on Th17 responses and neutrophil extracellular traps and recapitulates features of the transcriptional landscape of human lesional psoriatic skin. Together, our results propose that recall responses directed to skin fungi can directly promote skin inflammation and that exploration of tissue inflammation should be assessed in the context of recall responses to the microbiota.
Project description:The pathogenesis of acne has been linked to multiple factors such as increased sebum production, inflammation, follicular hyperkeratinization, and the action of Propionibacterium acnes within the follicle. In an attempt to understand the specific genes involved in inflammatory acne, we performed gene expression profiling in acne patients. Skin biopsies were obtained from an inflammatory papule and from normal skin in six patients with acne. Biopsies were also taken from normal skin of six subjects without acne. Gene array expression profiling was conducted using Affymetrix HG-U133A 2.0 arrays comparing lesional to nonlesional skin in acne patients and comparing nonlesional skin from acne patients to skin from normal subjects. Within the acne patients, 211 genes are upregulated in lesional skin compared to nonlesional skin. A significant proportion of these genes are involved in pathways that regulate inflammation and extracellular matrix remodeling, and they include matrix metalloproteinases 1 and 3, IL-8, human beta-defensin 4, and granzyme B. These data indicate a prominent role of matrix metalloproteinases, inflammatory cytokines, and antimicrobial peptides in acne lesions. These studies are the first describing the comprehensive changes in gene expression in inflammatory acne lesions and are valuable in identifying potential therapeutic targets in inflammatory acne. Keywords: acne lesion, normal skin