Project description:Follicular helper T (Tfh) cells are important for generating humoral immune responses by helping B cells form germinal centers (GCs) and the production of high-affinity antibodies. However, aberrant Tfh cell expansion also contributes to the generation of self-reactive autoantibodies and promotes autoantibody-mediated autoimmune diseases such as systemic lupus erythematosus (SLE). Protein phosphatase 2A catalytic subunit alpha isoform (PP2A Cα) expression levels are elevated in peripheral T cells of SLE patients and positively correlate with autoantibody titers and disease activity. Here, we demonstrate a critical role of PP2A in Tfh differentiation by using T cell restricted PP2A Cα deficient mice. We observed impaired Tfh differentiation and GC response in two different classical Tfh induction models. Mechanistic studies revealed that downregulation of protein translation of the Tfh lineage transcription factor BCL6 in PP2A deficient T cells. Importantly, we found that PP2A deficiency by either gene knockout or chemical inhibition alleviated lupus severity in mice. Lastly, we confirmed a positive correlation between PP2A Cα and BCL6 protein levels in human CD4+ T cells from patients with SLE. In summary, our study revealed a critical role of PP2A in regulating Tfh cells and suggests it is a potential therapeutic target for lupus.
Project description:To investigate the difference of gene expression in transcription level between PP2A Cα subunit knockout CD4+ T cell and WT T cell after TCR stimulation, we performed gene expression profiling analysis using data obtained from RNA-seq of the PP2A WT and CKO Naive CD4+ T cell stimulated with plate-bound CD3/CD28 for 1 hour.
Project description:Analysis of in vivo antigen-specific (LCMV-specific, SMARTA TCR transgenic) follicular helper CD4 T cells (CXCR5high),versus non-follicular helper CD4 T cells (CXCR5low), eight days after viral infection. A paper including data analysis of these experiments has been accepted for publication (Robert J. Johnston et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of follicular helper CD4 T cell differentiation). Experiment Overall Design: Analysis of in vivo antigen-specific (LCMV-specific, SMARTA TCR transgenic) follicular helper CD4 T cells (CXCR5high), versus non-follicular helper CD4 T cells (CXCR5low), eight days after viral infection.
Project description:The interplay between effector and regulatory T (Treg) cells is crucial for adaptive immunity, but how Treg control effector cell flexibility is elusive. We found that the phosphatase PTEN links Treg stability to the repression of TH1 and TFH (follicular helper) responses. Depletion of PTEN in Treg resulted in excessive TFH and germinal center responses and spontaneous inflammatory disease. These defects are considerably blocked by deletion of Interferon-γ, indicating coordinated control of TH1 and TFH responses. Mechanistically, PTEN maintains Treg stability and proper metabolic balance between glycolysis and mitochondrial fitness. Moreover, PTEN deficiency markedly upregulates mTORC2-Akt activity, and loss of this activity restores PTEN-deficient Treg function. Our studies establish a PTEN-mTORC2 axis that actively maintains Treg stability and coordinates Treg-mediated control of effector cell flexibility. We used microarrays to explore the gene expression profiles differentially expressed in CD4+CD25+Foxp3-YFP+ Treg cells from wild-type (WT; C57BL/6 crossed with Foxp3-Cre) and Ptenfl/flFoxp3-Cre (Ptenfl/fl mice crossed with Foxp3-Cre) mice
Project description:Analysis of in vivo antigen-specific (LCMV-specific, SMARTA TCR transgenic) follicular helper CD4 T cells (CXCR5high),versus non-follicular helper CD4 T cells (CXCR5low), eight days after viral infection. A paper including data analysis of these experiments has been accepted for publication (Robert J. Johnston et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of follicular helper CD4 T cell differentiation).
Project description:The interplay between effector and regulatory T (Treg) cells is crucial for adaptive immunity, but how Treg control effector cell flexibility is elusive. We found that the phosphatase PTEN links Treg stability to the repression of TH1 and TFH (follicular helper) responses. Depletion of PTEN in Treg resulted in excessive TFH and germinal center responses and spontaneous inflammatory disease. These defects are considerably blocked by deletion of Interferon-γ, indicating coordinated control of TH1 and TFH responses. Mechanistically, PTEN maintains Treg stability and proper metabolic balance between glycolysis and mitochondrial fitness. Moreover, PTEN deficiency markedly upregulates mTORC2-Akt activity, and loss of this activity restores PTEN-deficient Treg function. Our studies establish a PTEN-mTORC2 axis that actively maintains Treg stability and coordinates Treg-mediated control of effector cell flexibility.
Project description:Systemic lupus erythematosus (SLE) is an autoimmune disease in which autoreactive follicular helper T (Tfh) cells license high-affinity autoantibody production. Strikingly, the frequency of circulating Tfh is correlated with disease activity in SLE patients. As such, understanding the molecular mechanisms responsible for the aberrant Tfh cell generation and activation in lupus is of fundamental significance. We previously demonstrated that expanded Tfh cells in the B6.Sle1.Sle2.Sle3 (TC for triple congenic) lupus model exhibit high glycolysis and oxidative metabolism, which can be constrained by inhibiting glycolysis with 2-deoxyglucose (2DG). We performed RNA-seq analyses of splenic Tfh and naïve CD4+ T cells (Tn) comparing between TC and B6 mice. First, data revealed a large number of shared gene signatures in Tfh and Tn comparing between TC and B6 group, implicating that the aberrant development of Tfh initiates as early as Tn state. Further alignment of the Tfh transcriptome obtained from RNA-seq and earlier microarray assays demonstrated concerted alterations in numerous gene signatures of overactivation of T cells including dysregulated tyrosine kinase signaling and MAPK signaling pathways. Gene set enrichment analyses (GSEA) further revealed altered metabolic pathways (e.g., oxidative phosphorylation and pyruvate metabolism) among splenic TC Tfh cells.
Project description:Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and immune complex deposition. Previous evidence showed abnormal accumulation of B cells in the thymus of lupus-prone mice, but the role of this population remains undefined. We analyzed the distribution, function, and properties of thymic B cells in the BWF1 murine model of SLE. We found that B cells proliferate and cluster in germinal center-like structures along with autoantibody-secreting cells in the thymus of diseased-BWF1 mice. These thymic B cells induced the differentiation of follicular helper T cells (TFH). Our data suggest that the accumulation of B cells in the thymus of BWF1 mice results in the formation of germinal center-like structures and the expansion of TFH cells, which may favor the differentiation of autoreactive plasma cells. Therefore, the thymus emerges as a niche supporting the maintenance of the pathogenic humoral response in the development of murine SLE.