Project description:We analysed the molecular effects on gene modulation exerted by aglianico grape seed extract (AGS) in mesothelioma. Previous results allowed to demonstrate that AGS polar extracts determined apoptosis in three different mesothelioma cell lines including one resistant to conventional chemotherapeutic treatment. In addition this treatment affected tumorigenic and invasive properties of these cells We used microarrays to identify molecular pathway deregulated by AGS treatment and involved in apoptosis induction.
Project description:KDM4B, an important epigenetic regulator of cell proliferation, metastasis and genome stability, is often overexpressed in gastric cancer. Notably, elevated expression of KDM4B is associated with a poor clinical outcome. A global transcriptomic analysis between KDM4B control and KDM4B-knockdown AGS cells without or with Helicobacter pylori challenge reveals differentially expressed genes involved in response to virus, multi-organism process, and response to stimulus, suggesting KDM4B as an inducible epigenetic factor under H. pylori challenge.
Project description:Stable knockdown of NET1, a RhoGEF, was achieved in AGS Gastric Cancer cells. This gene is known to be overexpressed in the disease. Knockdown was achieved using lentiviral shRNA particles. Gene expression was compared between knockdown and scrambled shRNA treated control cells. Cells were treated with and without LPA, a known activator of RhoA. Three distinct cell lines were used in this study (all AGS cells); (i) Non Target cell (NT) stably expressing non targetting shRNA (ii) 63 and (iii) 65; the latter two are stable NET1 knockdown cells and are seperatly transduced with separate NET1 targetting shRNA particles. Cells were treated with and without 10microM LPA for 4 hr. Experimental replicates were performed for each treatment (A & B), RNA was prepared from each and seperatly hybridised to U133A arrays.
Project description:Malignant Peritoneal Mesothelioma (PeM) is a rare but frequently fatal cancer that originates from the peritoneal lining of the abdomen. Standard treatment of PeM is limited to cytoreductive surgery and/or chemotherapy, and no targeted therapies for PeM yet exist. This study performs comprehensive integrative analysis of genome, transcriptome, and proteome of treatment-naïve PeM tumors with the aim of identifying mesothelioma-related molecular alterations and potentially identifying novel treatment strategies.
Project description:Background: Mesothelioma is an aggressive, fatal cancer that is inextricably linked to asbestos exposure. Recent trials using a combination of the immune checkpoint inhibitors ipilimumab and nivolumab has significantly improved treatment outcomes, however durable treatment responses remain restricted to a subset of patients (15-20%), highlighting the need to identify strategies that better predict treatment response. Method: Here, we performed RNAseq on a large tumor biobank from genetically diverse mouse model, CC-MexTAg model to compare gene expression profiles of tumors from mice with different overall survival to develop a prognostic gene signature. Results: while the variation in gene expression data of tumors did not associate with 3-fold variation in overall survival of CC-MexTAg mice, we identified two distinct tumor clusters characterized with immune and non-immune phenotypes, in which immune cluster tumours showed the better potential of response to cancer therapies. We used 20 hub genes associated with these tumor phenotypes to develop a 6-gene signature that could predict survival in four independent mesothelioma datasets and showed a potential to respond to cancer immunotherapy.
Project description:Desmoplastic malignant mesothelioma is a rare tumor. Due to the rarity, genomic profile of desmoplastic malignant mesothelioma is not unveiled. To elucidate genomic profile of desmoplastic malignant mesothelioma, we used illumina infinium omini exomeexpress in an established patient-derived cell line of desmoplastic malignant mesothelioma.
Project description:Here we report that piroxicam/cisplatin combined treatment exerts an apoptotic effect on mesothelioma cells. Genome-wide transcriptome analyses lead us to identify p21 as the possible apoptosis mediator acting as downstream target of the piroxicam/cisplatin treatment.