Project description:Through transcriptome profiling using RNA-seq, we investigated the mechanisms behind bacterial endosymbiont (Burkholderia rhizoxinica) control over host (Rhizopus microsporus) reproductive biology. By analyzing differential expression across six different conditions, including fungal opposite mates growing independently with or without endosymbionts, as well as opposite mates growing together with endosymbionts (mating) or without endosymbionts (no mating), we were able to identify that endosymbionts control expression of a Ras signaling protein critical for sexual reproduction in many fungi (Ras2). As little is known regarding sexual reproduction in Mucoromycotina, we also used these data to investigate conservation of sex-related genes across all fungi, as well as predict potential genes involved in sensing of trisporic acid, the mating pheromone used by these fungi. 6 different conditions were analyzed, each consisting of two biological replicates. These included Rhizopus microsporus ATCC52813 (sex +) growing alone with endosymbionts, R. microsporus ATCC52814 (sex -) growing alone with endosymbionts, ATCC 52813 growing alone without endosymbionts, ATCC52814 growing alone without endosymbionts, ATCC52813 and ATCC52814 growing together with endosymbionts (successfully mating), and ATCC52813 and ATCC52814 growing together without endosymbionts (failure to mate). In each condition, fungi were cultivated on half-strength PDA and plugs of mycelium were placed at the edge of the plate. After 6 days, approximately 2.5 cm of tissue were harvested from the center of the plate. Each biological replicate consists of 5 plates which were pooled prior to RNA extraction to ensure sufficient tissue was collected.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:research was focus on the virus-derived sRNAs expression pattern in rice host or planthopper vector and host/vector gene expression pattern when infected with RSV
Project description:The aim of this study was to analyze potential brown planthopper (BPH) resistant genes in Rathu Heenati (RHT) by Affymetrix whole rice genome array,BPH susceptible and resistant rice varieties of TN1(Taichung Native 1)as control. All the resistant related genes derived from RHT will be analyzed according to the SSR markers interval flanked on the chromosome 3, 4, 6 and 10. It will be benefit to the gene clone and marker assistant breeding for Bph3 gene in the near future. We used microarrays to detail the global differential gene expression before and after brown planthopper attack in two different varieties, and identified distinct classes of high enriched genes induced by BPH or constituent in RHT
Project description:Through transcriptome profiling using RNA-seq, we investigated the mechanisms behind bacterial endosymbiont (Burkholderia rhizoxinica) control over host (Rhizopus microsporus) reproductive biology. By analyzing differential expression across six different conditions, including fungal opposite mates growing independently with or without endosymbionts, as well as opposite mates growing together with endosymbionts (mating) or without endosymbionts (no mating), we were able to identify that endosymbionts control expression of a Ras signaling protein critical for sexual reproduction in many fungi (Ras2). As little is known regarding sexual reproduction in Mucoromycotina, we also used these data to investigate conservation of sex-related genes across all fungi, as well as predict potential genes involved in sensing of trisporic acid, the mating pheromone used by these fungi.