Project description:Soil salinity is a major production constrain for agricultural crops, especially in Oryza sativa (rice). Analyzing physiological effect and molecular mechanism under salt stress is key for developing stress-tolerant plants. Roots system has a major role in coping with the osmotic change impacted by salinity and few salt-stress-related transcriptome studies in rice have been previously reported. However, transcriptome data sets using rice roots grown in soil condition are more relevant for further applications, but have not yet been available. The present work analyzed rice root and shoot physiological characteristics in response to salt stress using 250 mM NaCl for different timepoints. Subsequently, we identified that 5 day treatment is critical timepoint for stress response in the specific experimental design. We then generated RNA-Seq-based transcriptome data set with rice roots treated with 250 mM NaCl for 5 days along with untreated controls in soil condition using rice japonica cultivar Chilbo. We identified 447 upregulated genes under salt stress with more than fourfold changes (p value < 0.05, FDR < 0.05) and used qRT-PCR for six genes to confirm their salt-dependent induction patterns. GO-enrichment analysis indicated that carbohydrate and amino-acid metabolic process are significantly affected by the salt stress. MapMan overview analysis indicated that secondary metabolite-related genes are induced under salt stress. Metabolites profiling analysis confirmed that phenolics and flavonoids accumulate in root under salt stress. We further constructed a functional network consisting of regulatory genes based on predicted protein–protein interactions, suggesting useful regulatory molecular network for future applications.
Project description:We found that primary root (PR) is more resistant to salt stress compared with crown roots (CR) and seminal roots (SR). To understand better salt stress responses in maize roots, six RNA libraries were generated and sequenced from primary root (PR), primary roots under salt stress (PR-salt) , seminal roots (SR), seminal roots under salt stress (SR-salt), crown roots (CR), and crown roots under salt stress (CR-salt). Through integrative analysis, we identified 444 genes regulated by salt stress in maize roots, and found that the expression patterns of some genes and enzymes involved in important pathway under salt stress, such as reactive oxygen species scavenging, plant hormone signal perception and transduction, and compatible solutes synthesis differed dramatically in different maize roots. 16 of differentially expressed genes were selected for further validation with quantitative real time RT-PCR (qRT-PCR).We demonstrate that the expression patterns of differentially expressed genes are highly diversified in different maize roots. The differentially expressed genes are correlated with the differential growth responses to salt stress in maize roots. Our studies provide deeper insight into the molecular mechanisms about the differential growth responses of different root types in response to environmental stimuli in planta.
Project description:Plant pathogens require lethal virulence factors, susceptible hosts, and optimal environmental conditions for disease establishment. High soil salinity, exacerbated by climate change, significantly impacts agro-biological ecosystems. However, the overall interactions between plant pathogens and salt stress are not fully characterized or understood. This study examines the effects of salt stress on representative plant pathogens: Burkholderia gladioli, Pectobacterium carotovorum subsp. carotovorum, and Ralstonia solanacearum. Using pan-genome-based comparative transcriptomics, we analyzed the comprehensive alterations within the biological systems of plant pathogens when treated with 200 mM NaCl. Our results highlight the differential responses between salt-sensitive and salt-tolerant pathogens to salt stress.
Project description:To identify key genes in the regulation of salt tolerance in the mangrove plant Bruguiera gymnorhiza, the transcriptome profiling under salt stress was carried out. Main roots and lateral roots were collected from the mangrove plants at 0, 1, 3, 6, 12 and 24 h, 3 6 and 12 days after NaCl-treatment. Keywords: time course, stress response, root type comparison