Project description:We cultivated the flavobacterium Zobellia galactanivorans DsijT with fresh brown macroalgae with distinct chemical compositions. Its capacity to use macroalgae as the sole carbon source via the secretion of extracellular enzymes, leading to extensive tissue damages, highlights a sharing pioneer degrader behavior. RNA-seq transcriptome analysis revealed a metabolic shift toward the utilization of brown algal polysaccharides during tissue degradation. A subset of genes was specifically induced in cells grown with intact algae compared to purified polysaccharides. It notably includes genes involved in protection against oxidative burst, type IX secretion system proteins and novel uncharacterized Polysaccharides Utilization Loci (PULs). Comparative growth experiments and genomics between Zobellia members brought out putative genetic determinants of the pioneer behavior of Z. galactanivorans, whose in vitro role could be further characterized. This work constitutes the first investigation of the metabolic mechanisms of bacteria mediating fresh macroalgae breakdown, and will help unravel the role of marine microbes in the fate of macroalgal biomass.
Project description:Reprogramming in vivo using OCT4, SOX2, KLF4 and MYC (OSKM) triggers cell dedifferentiation, which is considered of relevance for tissue repair and regeneration. However, little is known about the metabolic requirements of this process. We found that antibiotic depletion of the gut microbiota abolished in vivo reprogramming. Analysis of bacterial metagenomes from stool samples of wild type (WT) and OSKM mice treated with doxycycline led us to identify vitamin B12 as a key factor for in vivo reprogramming, which is partly supplied by the microbiome. We report that B12 demand increases during reprogramming due to enhanced expression of enzymes in the methionine cycle, and supplementing B12 levels both in vitro and in vivo enhances the efficiency of OSKM reprogramming.
Project description:Marine brown algae produce the highly recalcitrant polysaccharide fucoidan, contributing to long-term oceanic carbon storage and climate regulation. Fucoidan is degraded by specialized heterotrophic bacteria, which promote ecosystem function and global carbon turnover using largely uncharacterized mechanisms. Here, we isolate and study two Planctomycetota strains from the microbiome associated with the alga Fucus spiralis, which grow efficiently on chemically diverse fucoidans. One of the strains appears to internalize the polymer, while the other strain degrades it extracellularly. Multi-omic approaches show that fucoidan breakdown is mediated by the expression of divergent polysaccharide utilization loci, and endo-fucanases of family GH168 are strongly upregulated during fucoidan digestion. Enzymatic assays and structural biology studies reveal how GH168 endo-fucanases degrade various fucoidan cores from brown algae, assisted by auxiliary hydrolytic enzymes. Overall, our results provide insights into fucoidan processing mechanisms in macroalgal-associated bacteria.
Project description:Urolithin A is a polyphenol derived from the multi-step metabolism of dietary ellagitannins by the human gut microbiota which can affect host health. Most, but not all, individuals harbor a microbiota capable of urolithin A production; however, the enzymes that dehydroxylate its dietary precursor, urolithin C, are unknown. Here, we used a combination of transcriptomics and proteomics to reveal a urolithin C dehydroxylase (ucd) operon that dehydroxylates 9-hydroxy urolithin compounds in Enterocloster spp. Using comparative genomics, we identified Lachnoclostridium pacaense as a novel urolithin C metabolizer. Biochemical characterization and structure predictions of proteins in the Ucd complex demonstrated that dehydroxylation was both NADH- and molybdopterin-dependent and used urolithin C as a terminal electron acceptor. A meta-analysis publicly available metagenomic data revealed that both bacteria and ucd operon genes are widely distributed in gut metagenomes and likely comprise keystone species in the metabolism of urolithins by the human gut microbiota.