Project description:Whole exome sequencing was performed on set of 48 DNA samples obtained from 16 EGFR mutated NSCLC patients whose tumors progressed following EGFR-TKI treatment. The DNA samples included baseline biopsy, rebiopsy and blood from the same patient. By comparing the variants in rebiopsy tumors and baseline tumors we aim to understand the genomic alterations responsible for the development of EGFR-TKI resistance in NSCLC patients.
Project description:To determine the critical mediator of TRIB3-enhanced EGFR recycling, we examined the expression profile of genes that might regulate EGFR recycling by using mRNA microarrays. EGFR tyrosine kinase inhibitors (TKIs) confer first line therapy for patients with non-small-cell lung cancer (NSCLC). However, patients eventually develop disease progression, often driven by inevitable acquisition of EGFR TKI resistant mutations. Currently all EGFR TKIs repress NSCLC through inhibiting the kinase activity of EGFR signaling, highlighting the need for therapeutics with alternative mechanisms of action. Here we report that the elevated TRIB3 expression associates positively with EGFR stability and NSCLC progression. TRIB3 interacts with EGFR and recruits PKCα thereby enhances PKCα-induced T654 phosphorylation, which suppresses EGFR degradation and enhances membrane recycling, EGFR downstream signaling, and NSCLC stemness.
Project description:Histological transformation from epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) to small cell lung cancer (SCLC) is the major resistance mechanism of EGFR tyrosine kinase inhibitors (TKIs). In our analysis of 59 regions of interest from EGFR-mutant NSCLC or combined SCLC/NSCLC tumors, we compared the transcriptomic profiles before and after transformation.
Project description:Bidkhori2012 - EGFR signalling in NSCLC
The paper describes and compares two models on EGFR signalling between normal and NSCLC cells. Moreover, it is shown that ERK (MAPK), STAT and Akt factor's activation pattern are different between normal and NSCLA models. This model corresponds to EGFR signalling in NSCLA cells.
Created by The MathWorks, Inc. SimBiology tool, Version 3.3
This model is described in the article:
Modeling of tumor progression in NSCLC and intrinsic resistance to TKI in loss of PTEN expression.
Bidkhori G, Moeini A, Masoudi-Nejad A
PloS one [2012, 7(10):e48004]
Abstract:
EGFR signaling plays a very important role in NSCLC. It activates Ras/ERK, PI3K/Akt and STAT activation pathways. These are the main pathways for cell proliferation and survival. We have developed two mathematical models to relate to the different EGFR signaling in NSCLC and normal cells in the presence or absence of EGFR and PTEN mutations. The dynamics of downstream signaling pathways vary in the disease state and activation of some factors can be indicative of drug resistance. Our simulation denotes the effect of EGFR mutations and increased expression of certain factors in NSCLC EGFR signaling on each of the three pathways where levels of pERK, pSTAT and pAkt are increased. Over activation of ERK, Akt and STAT3 which are the main cell proliferation and survival factors act as promoting factors for tumor progression in NSCLC. In case of loss of PTEN, Akt activity level is considerably increased. Our simulation results show that in the presence of erlotinib, downstream factors i.e. pAkt, pSTAT3 and pERK are inhibited. However, in case of loss of PTEN expression in the presence of erlotinib, pAkt level would not decrease which demonstrates that these cells are resistant to erlotinib.
This model is hosted on BioModels Database
and identified
by: MODEL1304020001
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been recommended as the first line therapy for non-small cell lung cancer (NSCLC) with EGFR mutations. However, acquired resistance to EGFR-TKIs is inevitable. Although anti- programmed cell death 1 (PD-1)/PD-ligand (PD-L1) immunotherapies have achieved great clinical success as second-line treatment for many cancer types, the clinical efficacy of anti-PD-1/PD-L1 blockades in EGFR mutated NSCLC patients has been demonstrated to be obviously lower than those without EGFR mutations. Here, we reported an advanced NSCLC patient with exon 19 deletion and T790M EGFR mutation benefitting from anti-PD-1 blockade therapy after acquiring resistance to EGFR-TKI. We characterized the mutational landscape of the patient with next-generation sequencing (NGS), and successfully identified neoantigen-specific T cell clones derived from EGFR exon 19 deletion, TP53 A116T and DENND6B R398Q mutations. Our findings support the potential application of immune checkpoint blockades in NSCLC patients with acquired resistance to EGFR-TKIs in the context of specific clonal neoantigens with high immunogenicity. Personalized immunomodulatory therapy targeting these neoantigens should be explored for better clinical outcomes in EGFR mutant NSCLC patients.
Project description:Aberrant overexpression or activation of EGFR drives the development of non-small cell lung cancer (NSCLC) and acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) by secondary EGFR mutations or c-MET amplification/activation remains as a major hurdle for NSCLC treatment. We previously identified WDR4 as a substrate adaptor of Cullin 4 ubiquitin ligase and an association of WDR4 high expression with poor prognosis of lung cancer. Here, using an unbiased ubiquitylome analysis, we uncover PTPN23, a component of the ESCRT complex, as a substrate of WDR4- based ubiquitin ligase. WDR4-mediated PTPN23 ubiquitination leads to its proteasomal degradation, thereby suppressing lysosome trafficking and degradation of wild type EGFR, EGFR mutant, and c-MET. Through this mechanism, WDR4 sustains EGFR and c-MET signaling to promote NSCLC proliferation, migration, invasion, stemness, and metastasis. Clinically, PTPN23 is downregulated in lung cancer and its low expression correlates with WDR4 high expression and poor prognosis. Targeting WDR4-mediated PTPN23 ubiquitination by a peptide that competes with PTPN23 for binding WDR4 promotes EGFR and c-MET degradation to block the growth and progression of EGFR TKI-resistant NSCLC. These findings identify a central role of WDR4/PTPN23 axis in EGFR and c-MET trafficking and a potential therapeutic target for treating EGFR TKI-resistant NSCLC.
Project description:To identify a plasma miRNA panel that could help to separate NSCLC patients with EGFR sensitive mutations and wild-type EGFR, plasma samples of 3 EGFR19DEL, 3 EGFRp.L858R, and 3 EGFRWT patients with NSCLC and 4 HCs were selected for Agilent miRNA microarray analysis to detect differences in the expression levels of circulating miRNAs (n = 2,568) between the above cohorts.
Project description:Bidkhori2012 - normal EGFR signalling
The paper describes and compares two models on EGFR signalling between normal and NSCLC cells. Moreover, it is shown that ERK (MAPK), STAT and Akt factor's activation pattern are different between normal and NSCLA models. This model corresponds to EGFR signalling in normal cells.
Created by The MathWorks, Inc. SimBiology tool, Version 3.3
This model is described in the article:
Modeling of tumor progression in NSCLC and intrinsic resistance to TKI in loss of PTEN expression.
Bidkhori G, Moeini A, Masoudi-Nejad A
PloS one [2012, 7(10):e48004]
Abstract:
EGFR signaling plays a very important role in NSCLC. It activates Ras/ERK, PI3K/Akt and STAT activation pathways. These are the main pathways for cell proliferation and survival. We have developed two mathematical models to relate to the different EGFR signaling in NSCLC and normal cells in the presence or absence of EGFR and PTEN mutations. The dynamics of downstream signaling pathways vary in the disease state and activation of some factors can be indicative of drug resistance. Our simulation denotes the effect of EGFR mutations and increased expression of certain factors in NSCLC EGFR signaling on each of the three pathways where levels of pERK, pSTAT and pAkt are increased. Over activation of ERK, Akt and STAT3 which are the main cell proliferation and survival factors act as promoting factors for tumor progression in NSCLC. In case of loss of PTEN, Akt activity level is considerably increased. Our simulation results show that in the presence of erlotinib, downstream factors i.e. pAkt, pSTAT3 and pERK are inhibited. However, in case of loss of PTEN expression in the presence of erlotinib, pAkt level would not decrease which demonstrates that these cells are resistant to erlotinib.
This model is hosted on BioModels Database
and identified
by: MODEL1304020000
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:In this study, we explored the mechanisms of hypoxia-induced EGFR TKI resistance in non-small cell lung cancer (NSCLC) harbored activating EGFR mutation. The NSCLC cell lines were exposed to normorxia or 1% oxygen for 4 weeks, and then we tested EGFR TKI sensitivity in normoxic and hypoxic NSCLC cell lines. In this microarray experiment, we used normoxic HCC827 and hypoxia-induced gefitinib resistant clones, C2-3 and C2-10. Those clones were selected with gefitinib treatment after the HCC827 were exposed to 1% oxygen for 4 weeks, and the HCC827 C2-3 and C2-10 clones were selected at random for this study.
Project description:Introduction: Overcoming of acquired resistance to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) is an intractable obstacle for many clinical oncologists. The mechanisms of resistance to EGFR-TKIs are very complex. Long non-coding RNAs (lncRNAs) may play an important role in cancer development and metastasis. However, the biological process between lncRNAs and drug resistance to EGFR mutated lung cancer largely unknown. Methods: Osimertinib and afatinib-resistant EGFR-mutated lung cancer cells were established using by a stepwise method. Microarray analysis of non-coding and coding RNAs was performed using parental and resistant EGFR-mutant NSCLC cells. Results: Microarray analysis was evaluated by bioinformatics analysis through medical-industrial collaboration. CRNDE and DGCR5 lncRNAs were highly expressed in EGFR-TKIs-resistant cells. CRNDE binds to eIF4A3 protein, down-regulates eIF4A3 and MUC1 expression, and down-regulates p-EGFR expression. CRNDE inhibition activated the eIF4A3/MUC1/EGFR signaling pathway and apoptotic activity and restored sensitivity to EGFR-TKIs. Conclusions: We identified lncRNA CRNDE associated with resistance to EGFR-TKIs in EGFR-mutant NSCLC cells. CRNDE may be a novel therapeutic target for EGFR mutant NSCLC patients.