Project description:Microarray analysis was used to compare gene expression of Aspergillus fumigatus under two different sporulation temperatures, 17oC and 32oC, with an emphasis on genes encoding known or putative allergens of the fungus. The objective of the study was to investigate whether allergenic potencies of A. fumigatus spores produced under different sporulation temperatures would be influenced by temperature-dependent transcriptional regulation of allergenicity genes.
Project description:As part of a worldwide survey of the indoor mycobiota about 520 new Cladosporium isolates from indoor environments mainly collected in China, Europe, New Zealand, North America and South Africa were investigated by using a polyphasic approach to determine their species identity. All Cladosporium species occurring in indoor environments are fully described and illustrated. Fourty-six Cladosporium species are treated of which 16 species are introduced as new. A key for the most common Cladosporium species isolated from indoor environments is provided. Cladosporium halotolerans proved to be the most frequently isolated Cladosporium species indoors.
Project description:UNLABELLED:A monographic revision of the hyphomycete genus Cladosporium s. lat. (Cladosporiaceae, Capnodiales) is presented. It includes a detailed historic overview of Cladosporium and allied genera, with notes on their phylogeny, systematics and ecology. True species of Cladosporium s. str. (anamorphs of Davidiella), are characterised by having coronate conidiogenous loci and conidial hila, i.e., with a convex central dome surrounded by a raised periclinal rim. Recognised species are treated and illustrated with line drawings and photomicrographs (light as well as scanning electron microscopy). Species known from culture are described in vivo as well as in vitro on standardised media and under controlled conditions. Details on host range/substrates and the geographic distribution are given based on published accounts, and a re-examination of numerous herbarium specimens. Various keys are provided to support the identification of Cladosporium species in vivo and in vitro. Morphological datasets are supplemented by DNA barcodes (nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA, as well as partial actin and translation elongation factor 1-? gene sequences) diagnostic for individual species. In total 993 names assigned to Cladosporium s. lat., including Heterosporium (854 in Cladosporium and 139 in Heterosporium), are treated, of which 169 are recognized in Cladosporium s. str. The other taxa are doubtful, insufficiently known or have been excluded from Cladosporium in its current circumscription and re-allocated to other genera by the authors of this monograph or previous authors. TAXONOMIC NOVELTIES:Cladosporium allicinum (Fr.: Fr.) Bensch, U. Braun & Crous, comb. nov., C. astroideum var. catalinense U. Braun, var. nov., Fusicladium tectonicola (Yong H. He & Z.Y. Zhang) U. Braun & Bensch, comb. nov., Septoidium uleanum (Henn.) U. Braun, comb. nov., Zasmidium adeniae (Hansf.) U. Braun, comb. nov., Zasmidium dianellae (Sawada & Katsuki) U. Braun, comb. nov., Zasmidium lythri (Westend.) U. Braun & H.D. Shin, comb. nov., Zasmidium wikstroemiae (Petch) U. Braun, comb. nov.
Project description:Food proteins differ in their allergenic potential. Currently, there is no predictive and validated bio-assay to evaluate the allergenicity of novel food proteins. The objective of this study was to investigate the potential of a human peripheral blood mononuclear cell (PBMC) gene expression assay to identify biomarkers to predict the allergenicity of legume proteins. PBMCs from healthy donors were exposed to weakly and strongly allergenic legume proteins. Inclusion of multiple protein pairs from 2S albumins (lupine and peanut) and 7S globulins (white bean and soybean) in a larger study, led to the selection of CCL2, CCL7, and RASD2 as biomarkers to distinguish weakly from strongly allergenic proteins.
Project description:Indoor fungi are a major cause of cosmetic and structural damage of buildings worldwide and prolonged exposure of these fungi poses a health risk. Aspergillus, Penicillium and Cladosporium species are the most predominant fungi in indoor environments. Cladosporium species predominate under ambient conditions. A total of 123 Cladosporium isolates originating from indoor air and indoor surfaces of archives, industrial factories, laboratories, and other buildings from four continents were identified by sequencing the internal transcribed spacer (ITS), and a part of the translation elongation factor 1α gene (TEF) and actin gene (ACT). Species from the Cladosporium sphaerospermum species complex were most predominant representing 44.7% of all isolates, while the Cladosporium cladosporioides and Cladosporium herbarum species complexes represented 33.3% and 22.0%, respectively. The contribution of the C. sphaerospermum species complex was 23.1% and 58.2% in the indoor air and isolates from indoor surfaces, respectively. Isolates from this species complex showed growth at lower water activity (≥ 0.82) when compared to species from the C. cladosporioides and C. herbarum species complexes (≥ 0.85). Together, these data indicate that xerotolerance provide the C. sphaerospermum species complex advantage in colonizing indoor surfaces. As a consequence, C. sphaerospermum are proposed to be the most predominant fungus at these locations under ambient conditions. Findings are discussed in relation to the specificity of allergy test, as the current species of Cladosporium used to develop these tests are not the predominant indoor species.
Project description:Microarray analysis was used to compare gene expression of Aspergillus fumigatus under two different sporulation temperatures, 17oC and 32oC, with an emphasis on genes encoding known or putative allergens of the fungus. The objective of the study was to investigate whether allergenic potencies of A. fumigatus spores produced under different sporulation temperatures would be influenced by temperature-dependent transcriptional regulation of allergenicity genes. Non-sporulating liquid culture of Aspergillus fumigatus was harvested and divided equally onto two sets of potato dextrose agar plates, one set for incubation at 17oC, the other for incubation at 32oC. After 48 hours of incubation, RNA was harvested from both sets of sporulating cultures, reverse-transcribed into dye-coupled cDNA and hybridized onto microarrays for analysis of gene expression. For each experiment, extracted RNA from the two cultures were hybridized onto two dye-swap technical replicate arrays. A total of three separate experiments were conducted for biological triplicates, for a total of six hybridizations.
Project description:Food proteins differ in their allergenic potential. Currently, there is no predictive and validated bio-assay to evaluate the allergenicity of novel food proteins. The objective of this study was to investigate the potential of a human peripheral blood mononuclear cell (PBMC) gene expression assay to identify biomarkers to predict the allergenicity of legume proteins. PBMCs from healthy donors were exposed to weakly and strongly allergenic legume proteins. Possible biomarkers for allergenicity were investigated by exposing PBMCs to a protein pair of weakly (white bean) and strongly allergenic (soybean) 7S globulins in a pilot experiment. Gene expression was measured by RNA-sequencing and differentially expressed genes were selected as biomarkers. 153 genes were identified as having significantly different expression levels to the 7S globulin of white bean compared to soybean.