Project description:Bacteriophage infection of Lactococcus lactis strains used in the manufacture of fermented milk products is a major threat for the dairy industry. A greater understanding of the global molecular response of the bacterial host following phage infection has the potential to identify new targets for the design of phage control measures for biotechnological processes. In this study, we have used whole-genome oligonucleotide microarrays to gain insights into the genomic intelligence driving the instinctive response of L. lactis subsp. lactis IL1403 to the onset of a challenge with the lytic prolate-headed phage c2. Following phage adsorption, the bacterium differentially regulated the expression of 61 genes belonging to 14 functional categories, and mostly to cell envelope (12 genes), regulatory functions (11 genes), and carbohydrate metabolism (7 genes). The nature of the differentially regulated genes suggests the orchestration of a complex response involving induction of cell envelope stress proteins, D-alanylation of cell-wall lipoteichoic acids (LTAs), restoration of the proton motive force (PMF), and energy conservation. Increased D-alanylation of LTAs would act as an adsorption blocking mechanism, which we speculate may allow the survival of a small percent of the cell population when facing more realistic in vivo low titer-phage attacks. The modification of LTAs decoration in response to phage c2 adsorption also suggests these cell wall structures as possible primary receptors for this phage. Restoration of a physiological PMF is achieved by regulating the expression of genes affecting the two main components of the PMF, and serves to reverse a drastic depolarization of the host membrane caused by phage adsorption. Down-regulation of energy-consuming metabolic activities and a switch to anaerobic respiration helps the bacterium to save energy in order to sustain the PMF and the overall response to phage. We finally propose that the overall transcriptional response of L. lactis IL1403 to the phage stimuli is orchestrated by the concerted action of Phage Shock Proteins and of the bivalent transcriptional regulator SpxB following activation by the two-component system CesSR. To our knowledge, this represents the first detailed description in L. lactis, and probably in Gram-positive bacteria, of the molecular mechanisms involved in the host response to the membrane perturbation mediated by phage adsorption. Two-condition experiment: IL1403 vs. Bacteriophage c2-infected IL1403 cells. Biological replicates: 2 controls, 2 infected, independently grown and harvested. Two technical replicates per array.
Project description:The lactococcal phage p2 is a model for studying the Skunavirus genus, the most prevalent group of phages in cheese factories worldwide. It infects L. lactis MG1363, a model strain for the study of Gram-positive bacteria. The structural proteins of phage p2 have been thoroughly described. However, most of its non-structural proteins are still uncharacterized. Here, we developed an integrative approach, making use of structural biology, genomics, physiology, and proteomics to provide insights into the function of ORF47, the most conserved non-structural protein of unknown function among the Skunavirus genus. We found this small phage protein to have a major impact on the bacterial proteome and to be important to prevent bacterial resistance to phage infection.
Project description:Bacteriophage infection of Lactococcus lactis strains used in the manufacture of fermented milk products is a major threat for the dairy industry. A greater understanding of the global molecular response of the bacterial host following phage infection has the potential to identify new targets for the design of phage control measures for biotechnological processes. In this study, we have used whole-genome oligonucleotide microarrays to gain insights into the genomic intelligence driving the instinctive response of L. lactis subsp. lactis IL1403 to the onset of a challenge with the lytic prolate-headed phage c2. Following phage adsorption, the bacterium differentially regulated the expression of 61 genes belonging to 14 functional categories, and mostly to cell envelope (12 genes), regulatory functions (11 genes), and carbohydrate metabolism (7 genes). The nature of the differentially regulated genes suggests the orchestration of a complex response involving induction of cell envelope stress proteins, D-alanylation of cell-wall lipoteichoic acids (LTAs), restoration of the proton motive force (PMF), and energy conservation. Increased D-alanylation of LTAs would act as an adsorption blocking mechanism, which we speculate may allow the survival of a small percent of the cell population when facing more realistic in vivo low titer-phage attacks. The modification of LTAs decoration in response to phage c2 adsorption also suggests these cell wall structures as possible primary receptors for this phage. Restoration of a physiological PMF is achieved by regulating the expression of genes affecting the two main components of the PMF, and serves to reverse a drastic depolarization of the host membrane caused by phage adsorption. Down-regulation of energy-consuming metabolic activities and a switch to anaerobic respiration helps the bacterium to save energy in order to sustain the PMF and the overall response to phage. We finally propose that the overall transcriptional response of L. lactis IL1403 to the phage stimuli is orchestrated by the concerted action of Phage Shock Proteins and of the bivalent transcriptional regulator SpxB following activation by the two-component system CesSR. To our knowledge, this represents the first detailed description in L. lactis, and probably in Gram-positive bacteria, of the molecular mechanisms involved in the host response to the membrane perturbation mediated by phage adsorption.
2010-12-15 | GSE26042 | GEO
Project description:Mouse lemur population genomics and phylogeography
Project description:The basic biology of bacteriophage–host interactions has attracted increasing attention due to a renewed interest in the therapeutic potential of bacteriophages. In addition, knowledge of the host pathways inhibited by phage may provide clues to novel drug targets. However, the effect of phage on bacterial gene expression and metabolism is still poorly understood. In this study, we tracked phage–host interactions by combining transcriptomic and metabolomic analyses in Pseudomonas aeruginosa infected with a lytic bacteriophage, PaP1. Compared with the uninfected host, 7.1% (399/5655) of the genes of the phage-infected host were differentially expressed genes (DEGs); of those, 354 DEGs were downregulated at the late infection phase. Many of the downregulated DEGs were found in amino acid and energy metabolism pathways. Using metabolomics approach, we then analyzed the changes in metabolite levels in the PaP1-infected host compared to un-infected controls. Thymidine was significantly increased in the host after PaP1 infection, results that were further supported by increased expression of a PaP1-encoded thymidylate synthase gene. Furthermore, the intracellular betaine concentration was drastically reduced, whereas choline increased, presumably due to downregulation of the choline–glycine betaine pathway. Interestingly, the choline–glycine betaine pathway is a potential antimicrobial target; previous studies have shown that betB inhibition results in the depletion of betaine and the accumulation of betaine aldehyde, the combination of which is toxic to P. aeruginosa. These results present a detailed description of an example of phage-directed metabolism in P. aeruginosa. Both phage-encoded auxiliary metabolic genes and phage-directed host gene expression may contribute to the metabolic changes observed in the host.
Project description:We observed the expression profile of the total mRNA in crp (TTHA1437) deletion mutant strain of Thermus thermophilus HB8 during infection of bacteriophage ϕYS40. Keywords: time course, bacteriophage, infection, CRP, cAMP receptor protein, deletion mutant
Project description:After the attachment of the lytic phage T4 to Escherichia coli cells, 1% E. coli cells showed an approximately 40-fold increase in mutant frequency. They were designated as mutator A global transcriptome analysis using microarrays was conducted to determine the difference between parental strain and mutators.
Project description:Time-series ribosome profiling experiment. It consists of mock and sk1 bacteriophage infected samples of Lactococcus Lactis at three different timepoints; 2,5 and 15 minutes post infection
Project description:A new virulent phage belonging to the Siphoviridae family and able to infect Lactococcus garvieae strains was isolated from compost soil. Phage GE1 has a prolate capsid (56 by 38 nm) and a long noncontractile tail (123 nm). It had a burst size of 139 and a latent period of 31 min. Its host range was limited to only two L. garvieae strains out of 73 tested. Phage GE1 has a double-stranded DNA genome of 24,847 bp containing 48 predicted open reading frames (ORFs). Putative functions could be assigned to only 14 ORFs, and significant matches in public databases were found for only 17 ORFs, indicating that GE1 is a novel phage and its genome contains several new viral genes and encodes several new viral proteins. Of these 17 ORFs, 16 were homologous to deduced proteins of virulent phages infecting the dairy bacterium Lactococcus lactis, including previously characterized prolate-headed phages. Comparative genome analysis confirmed the relatedness of L. garvieae phage GE1 to L. lactis phages c2 (22,172 bp) and Q54 (26,537 bp), although its genome organization was closer to that of phage c2. Phage GE1 did not infect any of the 58 L. lactis strains tested. This study suggests that phages infecting different lactococcal species may have a common ancestor.