Project description:Bisulfite treatment damages the DNA leading to fragmentation and loss of long-range methylation information. To overcome this limitation of bisulfite treated DNA we applied a new enzymatic deamination approach, termed EM-seq (Enzymatic Methyl-seq) to long-range sequencing technologies. Our methodology, named LR-EM-seq (Long Range Enzymatic Methyl-seq) preserves the integrity of DNA allowing long-range methylation profiling of 5-mC and 5-hmC) over several kilobases of genomic DNA. Applied to known differentially methylated regions (DMR), LR-EM-seq achieves phasing of over 5 kb resulting in much broader and better defined DMRs than previously reported.
Project description:We performed Chromatin Immunoprecipitation followed by deep-sequencing in TPC1 thyroid cancer cell line model, in order to identify the genomic elements enriched in RNA-Polymerase II, the enzymatic complex required for gene transcription. These data were integrated with RUNX2 genomic occupancy to map the RUNX2 responsive elements that are actively transcribed.
Project description:Elevated plasma homocysteine is an independent risk factor for cardiovascular disease and stroke, however the etiology remains poorly understood. Elevated homocysteine is known to inhibit methyltransferases including DNA methyltransferases, but no methylome-wide analysis of elevated homocysteine has been reported. Peripheral blood genomic DNA methylation in 8 Singaporean-Chinese ischemic stroke patients (4 male, 4 female) with varying homocysteine titer and hypertensive status were profiled using methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq) on Illumina Genome Analyzer IIx. A methylome wide screen was undertaken for gender, total plasma homocysteine, hypertension and age. The data show considerable variability within the small cohort, including at genes which are related to one carbon metabolism and cardiovascular disease. Peripheral blood genomic DNA methylation in 8 Singaporean-Chinese ischemic stroke patients (4 male, 4 female) was profiled using methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq) on Illumina Genome Analyzer IIx. Methylation parrterns were correlated with homocysteine levels, lypertensive status, gender and age.
Project description:We describe the use of a novel DNA modification-dependent restriction endonuclease AbaSI coupled with sequencing (Aba-seq) to map high-resolution hydroxymethylome of mouse E14 embryonic stem cells. The specificity of AbaSI enables sensitive detection of 5hmC at low occupancy regions. Bioinformatic analysis suggests 5hmCs in genic regions closely follows the 5mC distribution. 5hmC is generally depleted in CpG islands and only enriched in a small set of repetitive elements. A regularly spaced and oscillating 5hmC pattern was observed at the binding sites of CTCF. 5hmC is enriched at the poised enhancers with the mono-methylated histone H3 lysine 4 (H3K4me1) marks, but not at the active enhancers with the acetylated histone H3 lysine 27 (H3K27Ac) marks. Non-CG hydroxymethylation appears to be prevalent in the mitochondrial genome. We propose that some amounts of transiently stable 5hmCs may indicate a poised epigenetic state or de-methylation intermediate, while others may suggest a locally accessible chromosomal environment to the TET enzymatic apparatus. Mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cell by enzymatic digistion of AbaSI coupled with high-throughput sequencing, in replicates.
Project description:Background: To better understand the role DNA methylation plays in regulating gene expression in the developng heart and furthermore the role it plays in heart development we performed genome wide DNA methylation profiling of embryonic hearts at embryonic day (E)11.5 and E14.5 using methyl sensitive tiny fragment enrichment coupled with massive parallel sequencing by using the methyl-sensitive restriction enzyme HpyCH4IV, recognition site 'ACGT'. Results: We found that global methylation remains stable at analyzed 'ACGT' sites (1.64 million site) in developing hearts between E11.5 and E14.5. However, differential methylation was identified at individual loci enriched at genes involved in heart development suggesting a role for DNA methylation in the developing heart. Used Methyl Sensitive Tiny Fragment Enrichment/Massive Parallel Sequencing (MSFE/MPS) to assay methylation at 'ACGT' sites throughout the genome and generate a developmental profile of DNA methylation in the embryonic heart and to identify differences between developing mouse hearts at E11.5 and E14.5.
Project description:Microbiome sequencing model is a Named Entity Recognition (NER) model that identifies and annotates microbiome nucleic acid sequencing method or platform in texts. This is the final model version used to annotate metagenomics publications in Europe PMC and enrich metagenomics studies in MGnify with sequencing metadata from literature. For more information, please refer to the following blogs: http://blog.europepmc.org/2020/11/europe-pmc-publications-metagenomics-annotations.html https://www.ebi.ac.uk/about/news/service-news/enriched-metadata-fields-mgnify-based-text-mining-associated-publications
Project description:We are interested in deciphering the mechanism by which DNA methylation in late B cell differentiation affects humoral immune response. We were using enzymatic-methyl sequencing (EM-seq) and chose to study a very rare immunodeficiency called ICF type 4, where a point mutation in a gene encoding the protein HELLS causes a lack of both circulating antibodies and memory B cells in human. HELLS is a chromatin remodeler, that allows for DNA methylation to occur.
Project description:We performed whole-genomic and transcriptomic sequencing of more than 100 Japanese renal cell carcinoma (RCC) cases, including clear cell RCC, papillary RCC, chromophobe RCC, and TFE3-translocated RCC. In addition, we conducted epigenome sequencing analyses: the assay for transposase-accessible chromatin sequencing (ATAC-seq) and enzymatic methyl sequencing.