Project description:Tsetse flies (Glossina spp.) are major vectors of African trypanosomes, causing either Human or Animal African Trypanosomiasis (HAT or AAT). Several approaches are developed to control the disease among which the anti-vector Sterile Insect Technique. Another approach in the frame of anti-vector strategies could consist in controlling the fly’s vector competence which needs identifying factors (genes, proteins, biological pathways, …) involved in this process. The present work aims to verify whether protein candidates identified under experimental controlled conditions on insectary-reared tsetse flies have their counterpart in field-collected flies. Glossina palpalis palpalis flies naturally infected with Trypanosoma congolense were sampled in two HAT/AAT foci in Southern Cameroon. After dissection, the proteome from guts of parasite-infected flies were compared to that from uninfected flies in order to identify quantitative and/or qualitative changes associated to infection. A total of 3291 proteins were identified of which 1818 could be quantified. The comparative analysis allowed identifying 175 proteins with significant decreased abundance in infected as compared to uninfected flies, while 61 proteins displayed increased abundance. Among the former are RNA binding proteins, kinases, actin, ribosomal proteins, endocytosis proteins, oxido-reductases, as well as proteins that are unusually found such as tsetse salivary proteins (Tsal) or Yolk proteins. Among the proteins with increased abundance are fructose-1,6-biphosphatase, serine proteases, membrane trafficking proteins, death proteins (or apoptosis proteins), and SERPINs (inhibitor of serine proteases, enzymes considered as trypanosome virulence factors) that displayed highest increased abundance. Sodalis, Wiggleswothia and Wolbachia proteins are strongly under-represented, particularly when compared to data from similar experimentation conducted under controlled conditions on T. brucei gambiense infected (or uninfected) G. palpalis gambiensis insectary reared flies. Comparing the overall recorded data, 364 proteins identified in gut extracts from field flies were shown to have a homologue in insectary flies. Discrepancies between the two studies may arise from differences in the species of studied flies and trypanosomes as well as in differences in environmental conditions in which the two experiments were carried out. Finally, the present study together with former proteomic and transcriptomic studies on the secretome of trypanosomes, on the gut extracts from insectary reared and on field collected tsetse flies, provide a pool of data and information on which to draw in order to perform further investigations on, for example, mammal host immunization or on fly vector competence modification via para-transgenic approaches.