Project description:We used one of the RNA-DNA proximity ligation approaches, RedC, for the analysis of an RNA-DNA interactome of microbial cells. We assess the distribution of main RNA types — mRNA, tRNA and rRNA — along the genomes of E.coli, B.subtilis, and thermophilic archaea T. adornatum.
Project description:Rapid advances in high-throughput DNA sequencing technologies are accelerating the pace of research into personalized medicine. While methods for variant discovery and genotyping from whole genome sequencing (WGS) datasets have been well established, linking variants together into a single haplotype remains a challenge. An understanding of complete haplotypes of an individual will help clarify the consequences of inheriting multiple alleles in combination, identify novel disease associations, and augment studies of gene regulation. Although numerous methods have been developed to reconstruct haplotypes from WGS data, chromosome-span haplotypes at high resolution have been difficult to obtain. Here we present a novel method to accurately reconstruct chromosome-span haplotypes from proximity-ligation and DNA shotgun sequencing. We demonstrate the utility of this approach in producing high-resolution chromosome-span haplotype phasing in mouse and human. While proximity-ligation based methods were originally designed to investigate spatial organization of the genome, our results lend support for their use as a general tool for haplotyping in the future. Hi-C experiments in two replicates of Human GM12878 Lymphoblastoid cells and two replicates of F123 mouse ES cells (4 total samples)
Project description:Rapid advances in high-throughput DNA sequencing technologies are accelerating the pace of research into personalized medicine. While methods for variant discovery and genotyping from whole genome sequencing (WGS) datasets have been well established, linking variants together into a single haplotype remains a challenge. An understanding of complete haplotypes of an individual will help clarify the consequences of inheriting multiple alleles in combination, identify novel disease associations, and augment studies of gene regulation. Although numerous methods have been developed to reconstruct haplotypes from WGS data, chromosome-span haplotypes at high resolution have been difficult to obtain. Here we present a novel method to accurately reconstruct chromosome-span haplotypes from proximity-ligation and DNA shotgun sequencing. We demonstrate the utility of this approach in producing high-resolution chromosome-span haplotype phasing in mouse and human. While proximity-ligation based methods were originally designed to investigate spatial organization of the genome, our results lend support for their use as a general tool for haplotyping in the future.
Project description:We report Proximity Ligation Assisted ChIP-sequencing (PLAC-seq), a method for comprehensive detection of long-range interactions associated with proteins of interest. PLAC-seq requires up to 500-fold less starting material compared to ChIA-PET and using experimentally determined input as control precisely reveals protein associated interaction upto single-element resolution. Application of PLAC-seq to mouse embryonic stem cells revealed a comprehensive map of regulatory interactions.
Project description:Classical methods of investigating protein-protein interactions (PPIs) are generally performed in non-living systems, yet in recent years new technologies utilizing proximity labeling (PL) have given researchers the tools to explore proximal PPIs in living systems. PL has distinct advantages over traditional protein interactome studies, such as the ability to identify weak and transient interactions in vitro and in vivo. Most PL studies are performed on targets within or on the cell membrane. We have adapted the original PL method to investigate PPIs within the extracellular compartment, using both BioID2 and TurboID, that we term extracellular PL (ePL). To demonstrate the utility of this modified technique, we investigate the interactome of the widely expressed matrisome protein Tissue inhibitors of metalloproteinases 2 (TIMP2). Tissue inhibitors of metalloproteinases (TIMPs) are a family of multi-functional proteins that were initially defined by their ability to inhibit the enzymatic activity of metalloproteinases (MPs), the major mediators of extracellular matrix (ECM) breakdown and turnover. TIMP2 exhibits a broad expression profile and is often abundant in both normal and diseased tissues. Understanding the functional transformation of matrisome regulators, like TIMP2, during the evolution of tissue microenvironments associated with disease progression is essential for the development of ECM targeted therapeutics. Using carboxyl- and amino-terminal fusion proteins of TIMP2 with BioID2 and TurboID, we describe the TIMP2 proximal interactome. We also illustrate how the TIMP2 interactome changes in the presence of different stimuli, in different cell types, in unique culture conditions (2D vs 3D), and with different reaction kinetics (BioID2 vs. TurboID); demonstrating the power of this technique versus classical PPI methods. We propose that the screening of matrisome targets in disease models using ePL will reveal new therapeutic targets for further comprehensive studies.
Project description:Proof-of-concept of a new method involving the limited digestion and subsequent ligation of intramolecular RNA structures in situ followed by deep sequencing