Project description:m6A profiling in two accessions of Arabidopsis thaliana (Can-0 and Hen-16) using the m6A-targeted antibody coupled with high-throughput sequencing m6A-seq in two accessions of Arabidopsis, two replicates for each sample
Project description:We developed a novel approach, m6A-seq, for high-resolution mapping of the transcriptome-wide m6A landscape, based on antibody-mediated capture followed by massively parallel sequencing. Identification of m6A modified sequences in HepG2 cells.
Project description:We developed a novel approach, m6A-seq, for high-resolution mapping of the transcriptome-wide m6A landscape, based on antibody-mediated capture followed by massively parallel sequencing Identification of m6A modified sequences in mouse liver and human brain
Project description:Emerging studies have revealed that N6-methyladenosine modification is involved in the development of various cancers. However, the m6A modification pattern of endometrioid ovarian cancer (EOC) has not been demonstrated. In the present study, high-throughput sequencing combined with methylated RNA immunoprecipitation (MeRIP-seq) and RNA sequencing were used to obtain the transcriptome-wide m6A modifications of endometrioid ovarian cancer for the first time.
Project description:We developed a novel approach, m6A-seq, for high-resolution mapping of the transcriptome-wide m6A landscape, based on antibody-mediated capture followed by massively parallel sequencing. Identification of m6A modified sequences in HepG2 cells. HepG2 cells were incubated with either IFNg (200ng/ml) or HGF/SF (10 ng/ml) over night. Stress effects were tested in HepG2 cells by either 30 minutes incubation at 43M-BM-:C (heat shock) or UV irradiation of 0.04 J/cm2 followed by 4 hours of recovery in normal growing conditions prior to harvesting using Trypsin.
Project description:We developed a novel approach, m6A-seq, for high-resolution mapping of the transcriptome-wide m6A landscape, based on antibody-mediated capture followed by massively parallel sequencing
Project description:We developed a novel approach, m6A-seq, for high-resolution mapping of the transcriptome-wide m6A landscape, based on antibody-mediated capture followed by massively parallel sequencing.
Project description:We developed a novel approach, m6A-seq, for high-resolution mapping of the transcriptome-wide m6A landscape, based on antibody-mediated capture followed by massively parallel sequencing.
Project description:We show that N6-methyladenosine (m6A), the most abundant internal modification in mRNA/lncRNA with still poorly characterized function, alters RNA structure to facilitate the access of RBM for heterogeneous nuclear ribonucleoprotein C (hnRNP C). We term this mechanism m6A-switch. Through combining PAR-CLIP with Me-RIP, we identify 39,060 m6A-switches among hnRNP C binding sites transcriptome-wide. We show that m6A-methyltransferases METTL3 or METTL14 knockdown decreases hnRNP C binding at 16,582 m6A-switches. Taken together, 2,798 m6A-switches of high confidence are identified to mediate RNA-hnRNP C interactions and affect diverse biological processes including cell cycle regulation. These findings reveal the biological importance of m6A and provide insights into the sophisticated regulation of RNA-RBP interactions through m6A-induced RNA structural remodeling. Measure the m6A methylated hnRNP C binding sites transcriptome-wide by PARCLIP-MeRIP; measure the differential hnRNP C occupancies upon METTL3/METTL14 knockdown by PAR-CLIP; measure RNA abundance and splicing level changes upon HNRNPC, METTL3 and METTL14 knockdown