Project description:Two alfalfa varieties, 'Chilean' (M. sativa ssp. sativa var. Chilean, drought sensitive) and 'Wisfal' (M. sativa ssp. falcata var. Wisfal, drought tolerant), with contrasting water use efficiency were subjected to water withholding for 11 days followed by re-watering. Samples were taken for well-watered plants and plants after five, eight, eleven days of drought stress as well as plants after recovery for one day following drought stress. Roots and shoots were sampled and analyzed separately by expression profiling using Affymetrix Medicago GeneChip.
Project description:Orthopoxviruses are large DNA viruses which can cause disease in numerous host species. Even though the eradication of variola virus - the causative agent of human smallpox M-bM-^@M-^S succeeded, with the end of vaccinations several other orthopoxviruses emerged as potential threat to human health. For instance, animal-borne monkeypox virus, cowpox virus and closely related vaccinia virus are all capable of establishing zoonotic infections in humans. The disease caused by each virus differs in terms of expression and severity, but we still know little about the reasons for these different phenotypes. They may be explained by the unique repertoire of host cell modulating factors encoded by each virus. In this study, we aimed at characterizing the specific modulation of the host cells gene expression profile by orthopoxvirus infection. In our study we analyzed changes in host cell gene expression of HeLa cells after infection with cowpox virus, monkeypox virus or vaccinia virus and compared these to each other and to the gene expression profile of non-infected cells using Agilent Whole Genome Microarray technology. We could identify major differences in viral modulation of host cell immune response genes, especially an induction of genes involved in leukocyte migration and Toll-like receptor signalling in cowpox and monkeypox virus infected cells. This was not observed following vaccinia virus infection. If these differences contribute to the different clinical manifestation of cowpox, monkeypox and vaccinia virus infections in certain host species remains to be elucidated. We analyzed the gene expression profile of HeLa cells wich were either mock-infected or infected with Vaccinia virus strain IHD-W, Cowpox virus strain Brighton Red or Monkeypox virus strain MSF#6 at a multiplicity of infection of 5. Experiments were performed in duplicate. At 6 h post infection total RNA was isolated from infected cells and used for microarray analysis.
Project description:Proteomic analysis of iron restriction of the marine pathogen Renibacterium salmoninarum that causes the disease (BKD), in this study two isolated Chilean H-2 strains and the type strain ATCC33209 have been used. These results show that changes are generated at the level of protein expression in pathways involved in iron metabolism and uptake.
Project description:Orthopox viruses, including monkeypox, multiply intracellularly and induce numerous changes in host genes expression. The virus target mainly humoral host response, and simultaneously, exploits other genes and functions to reproduce effectively. The goal of this experiment is to identify those host genes and functions that are essential for monkeypox virus replication. Mock infected control cells were treated and incubated identically to time point arms, except for virus exposure. Two time points of cells infected with monkeypox virus were harvested at 3, 7 hours post infection, and gene expression was assessed using microarray in all arms. The experiment was done in triplicate.
Project description:Orthopox viruses, including monkeypox, multiply intracellularly and induce numerous changes in host genes expression. The virus target mainly humoral host response, and simultaneously, exploits other genes and functions to reproduce effectively. The goal of this experiment is to identify those host genes and functions that are essential for monkeypox virus replication.
Project description:Different genes, especially cytokines, have been deregulated in the inflammatory environment of intestinal mucosa in ulcerative colitis patients. The effects of differential gene expression such as immunological factors have been described before, however, there is no evidence of alarmins deregulated by microRNAs impacting on the pathophysiology of UC. Our goal is to study deregulated genes in inflamed mucosa for microRNA pairing in a Chilean cohort of patients. We used microarrays to compare inflamed and non inflamed mucosa from chilean ulcerative colitis patients
Project description:We found that Monkeypox viral proteins H3L and A29L caused injuries in human cells. Whether they can bind chromatin and re-model chromation is unclear. Here, we applied ChIP-seq on hESCs to evaluate whether and how they are involved in chromatin regulation.
Project description:The soaring global monkeypox cases lead to a surge in demand for monkeypox vaccine, which far exceeds the supply. mRNA vaccine has achieved great success in prevention of coronavirus disease and holds promise against diverse pathogens. In this study, we generate a polyvalent lipid nanoparticle (LNP) mRNA vaccine candidate for monkeypox virus (MPXV) and evaluate its immunogenicity in animal models. This polyvalent MPXV mRNA vaccine candidate, MPXVac-097, encodes five 2022 MPXV targets that are important surface antigens. Three-dose (prime-boost-booster) MPXVac-097 vaccination elicits strong antibody response to A35R and E8L antigens, moderate response to M1R, but not B6R or A29, highlighting the differences in immunogenicity. Bulk T cell receptor (TCR) sequencing reveals preferential usage of VJ combinations and clonal expansion of peripheral T cells after MPXVac-097 vaccination. These data demonstrate initial feasibility of developing MPXV mRNA vaccine and pave the way for its future optimization.
Project description:We developed two multivalent mRNA vaccines that induced strong immune responses and provided protection against monkeypox virus in mice. Additionally, we used single-cell RNA sequencing and V(D)J sequencing to explore the postvaccination immune landscape at the single-cell level and revealed B-cell receptor and T-cell receptor diversity, gene rearrangement, and predicted CDR3 motifs, systematically exploring the post-vaccination immune landscape at the single-cell level. These findings are poised to guide future vaccine design and present an innovative clinical strategy against monkeypox and orthopoxvirus outbreaks.
Project description:Monkeypox virus (MPV) can infect human cells and induces injuries in human. However, whether and how MPV affect the function of human cells remain to be elucidated. Here, we overexpressed H3L and A29L in hESCs, separately. We appliced RNA-seq on cardiac lineage cells (day 3 of cardiac differentiation) derived from human embryonic stem cells (hESCs) overexpressed with Monkeypox virus-proteins (Control, H3L and A29L) and want to know gene expression patterns of control and overexpression cell lines. Subsequent data analyses will help us to know whether and how H3L and A29L affect human cardiac development.