Project description:UBE3A encodes a E3 ubiquitin ligase whose loss from the maternal allele causes the neurodevelopmental disorder Angelman syndrome. Previous studies of UBE3A function have not examined full Ube3a deletion in mouse, the complexity of imprinted gene networks in brain, nor the molecular basis of systems-level cognitive dysfunctions in Angelman syndrome. We therefore utilized a systems biology approach to elucidate how UBE3A loss impacts the early postnatal brain in a novel CRISPR/Cas9 engineered rat Angelman model of a complete Ube3a deletion. Strand-specific transcriptome analysis of offspring from maternally or paternally inherited Ube3a deletions revealed the expected parental expression patterns of Ube3a sense and antisense transcripts by postnatal day 2 (P2) in hypothalamus and day 9 (P9) in cortex, compared to wild-type littermates. The dependency of genome-wide effects on parent-of-origin, Ube3a genotype, and time (P2, P9) was investigated through transcriptome (RNA-seq of cortex and hypothalamus) and methylome (whole genome bisulfite sequencing of hypothalamus). Weighted gene co-expression and co-methylation network analyses identified co-regulated networks in maternally inherited Ube3a deletion offspring enriched in postnatal developmental processes including Wnt signaling, synaptic regulation, neuronal and glial functions, epigenetic regulation, ubiquitin, circadian entrainment, and splicing. Furthermore, we showed that loss of the paternal Ube3a antisense transcript resulted in both unique and overlapping dysregulated gene pathways with maternal loss, predominantly at the level of differential methylation. Together, these results provide a holistic examination of the molecular impacts of UBE3A loss in brain, supporting the existence of interactive epigenetic networks between maternal and paternal transcripts at the Ube3a locus.
Project description:The E3 ubiquitin ligase Ube3a is biallelically expressed in mitotic cells, including neural progenitors and glial cells, raising the possibility that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent-of-origin. To test this possibility, we engineered a mouse line that harbors an autism-linked UBE3A-T485A (T508A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We found that both paternally and maternally expressed UBE3A-T485A resulted in elevated UBE3A activity in neural progenitors and glial cells where Ube3a is biallelically expressed. Expression of UBE3A-T485A from the maternal allele, but not the paternal one, led to a persistent elevation of UBE3A activity in postmitotic neurons. Maternal, paternal, or biparental inheritance of the mutant allele promoted embryonic expansion of Zcchc12 lineage interneurons which mature into Sst and Calb2 expressing interneurons, and caused a spectrum of behavioral phenotypes that differed by parent-of-origin. Phenotypes were distinct from those observed in Angelman syndrome model mice that harbor a Ube3a maternal loss-of-function allele. Our study shows that the UBE3A-T485A gain-of-function mutation causes distinct neurodevelopmental phenotypes when inherited maternally or paternally. These findings have clinical implications for a growing number of disease-linked UBE3A gain-of-function mutations.
Project description:The E3 ubiquitin ligase Ube3a is biallelically expressed in mitotic cells, including neural progenitors and glial cells, raising the possibility that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent-of-origin. To test this possibility, we engineered a mouse line that harbors an autism-linked UBE3A-T485A (T508A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We found that both paternally and maternally expressed UBE3A-T485A resulted in elevated UBE3A activity in neural progenitors and glial cells where Ube3a is biallelically expressed. Expression of UBE3A-T485A from the maternal allele, but not the paternal one, led to a persistent elevation of UBE3A activity in postmitotic neurons. Maternal, paternal, or biparental inheritance of the mutant allele promoted embryonic expansion of Zcchc12 lineage interneurons which mature into Sst and Calb2 expressing interneurons, and caused a spectrum of behavioral phenotypes that differed by parent-of-origin. Phenotypes were distinct from those observed in Angelman syndrome model mice that harbor a Ube3a maternal loss-of-function allele. Our study shows that the UBE3A-T485A gain-of-function mutation causes distinct neurodevelopmental phenotypes when inherited maternally or paternally. These findings have clinical implications for a growing number of disease-linked UBE3A gain-of-function mutations.
Project description:Angelman syndrome is caused by loss of funtional ubiquitin E3 ligase UBE3A and results in severe deley in cognitive and motor development. In neurons, UBE3A locates to the synapse and to the nucleus. Loss of nuclear UBE3A results in development of Angelman syndrome like symptoms in mice. UBE3A can function as transcriptional coactivator of steroid hormone receptors, but the entire function of UBE3A in the nucleus is still not clear. So we wanted to study differences in the transcriptome in neurons differentiated from iPSCs that were derived from patients with Angleman syndrome and normal controls.
Project description:Angelman syndrome (AS) is a neurogenetic developmental disorder that results from the loss of E3 ubiquitin ligase UBE3A due to mutations in or deletions of the maternally inherited UBE3A allele. While mouse models of AS have implicated abnormal synaptic signaling and plasticity underlying behavioral dysfunction, how the loss of UBE3A contributes to hyperactivity of neuronal networks seen in AS patients remains unclear. Here, by utilizing human induced neurons and 3D cortical organoids derived from AS patient iPSCs and CRISPR-Cas9 mediated UBE3A KO hESCs, we uncovered a novel role of UBE3A in suppressing neuronal hyperexcitability via ubiquitin-mediated degradation of BK channels. More importantly, augmented BK channel activity in neurons manifested as increased intrinsic excitability of neurons and network level bursting and synchronization, which can be pharmacologically normalized by BK antagonists. Our study has illustrated the utility of modeling neurological diseases with human neural cells, and our results have provided new insights into underlying pathophysiological mechanisms and potential therapeutic strategy in Angelman syndrome.
Project description:Angelman syndrome (AS) is a genetic disorder which entails autism, intellectual disability, lack of speech, motor deficits, andseizure susceptibility. It is caused by the lack of UBE3A protein expression, which is an E3-ubiquitin ligase. Despite AS equalprevalence in males and females, not much data on how sex affects the syndrome was reported. In the herein study, we thoroughlycharacterized many behavioral phenotypes of AS mice. The behavioral data acquired was analyzed with respect to sex. Inaddition, we generated a new mRNA sequencing dataset. We analyzed the coding transcriptome expression profiles with respectto the effects of genotype and sex observed in the behavioral phenotypes. We identified several neurobehavioral aspects,especially sensory perception, where AS mice either lack the male-to-female differences observed in wild-type littermates oreven show opposed differences. However, motor phenotypes did not show male-to-female variation between wild-type (WT) andAS mice. In addition, by utilizing the mRNA sequencing, we identified genes and isoforms with expression profiles that mirrorthe sensory perception results. These genes are differentially regulated in the two sexes with inverse expression profiles in ASmice compared to WT littermates. Some of these are known pain-related and estrogen-dependent genes. The observed differ-ences in sex-dependent neurobehavioral phenotypes and the differential transcriptome expression profiles in AS mice strengthenthe evidence for molecular cross talk between Ube3a protein and sex hormone receptors or their elicited pathways. Theseinteractions are essential for understanding Ube3a deletion effects, beyond its E3-ligase activity.
Project description:Angelman syndrome is a neurodevelopmental disorder caused by (epi)genetic lesions of maternal UBE3A. Research has focused largely on the role of UBE3A in neurons due to its imprinting in that cell type. Yet, evidence suggests there may be broader neurodevelopmental impacts of UBE3A dysregulation. Human cerebral organoids can investigate these understudied aspects of UBE3A as they recapitulate diverse cell types of the developing human brain. We performed single-cell RNA-sequencing on organoids to reveal the effects of UBE3A disruption on cell type-specific transcriptomic alterations and compositions. In the absence of UBE3A, progenitor proliferation and structures were disrupted while organoid composition shifted away from proliferative cell types. We observed impacts on non-neuronal cells including choroid plexus enrichment. Furthermore, EMX1+ cortical progenitors were negatively impacted, disrupting corticogenesis, and potentially delaying neuron maturation. This work reveals novel impacts of UBE3A on understudied cell types and related neurodevelopmental processes and elucidates potential new therapeutic targets.
Project description:Ubiquitin-protein ligase E3A (UBE3A) has dual functions as a E3 ubiquitin-protein ligase and coactivator of nuclear hormone receptors. Mutations or deletions of the maternally inherited UBE3A gene cause Angelman syndrome. Here, we performed transcriptome profiling in the hippocampus of Ube3am+/p+ and Ube3am-/p+ mice, and determined that the expression of the retinoic acid (RA) signalling pathway was downregulated in Ube3a-deficient mice compared to WT mice. Furthermore, we demonstrated that UBE3A directly interacts with RARα and may function as a coactivator of the nuclear receptor RARα to participate in the regulation of gene expression. Loss of UBE3A expression caused the downregulation of the expression of RA-related genes, including Erbb4, Dpysl3, Calb1, Pten and Arhgap5 in Ube3am-/p+ mice brain tissues. This work revealed a new role for UBE3A in regulating retinoic acid (RA) signalling downstream genes and hopefully to shed light on the potential drug target of AS.
Project description:The dysregulation of genes in neurodevelopmental disorders that lead to social and cognitive phenotypes is a complex, multilayered process involving both genetics and epigenetics. Parent-of-origin effects of deletion and duplication of the 15q11-q13 locus leading to Angelman, Prader-Willi, and Dup15q syndromes are due to imprinted genes, including UBE3A, which is maternally expressed exclusively in neurons. UBE3A encodes a ubiquitin E3 ligase protein with multiple downstream targets, including RING1B, which in turn monoubiquitinates histone variant H2A.Z. To understand the impact of neuronal UBE3A levels on epigenome-wide marks of DNA methylation, histone variant H2A.Z positioning, active H3K4me3 promoter marks, and gene expression, we took a multi-layered genomics approach. We performed an siRNA knockdown of UBE3A in two human neuroblastoma cell lines, including parental SH-SY5Y and the SH(15M) model of Dup15q. Genes differentially methylated across cells with differing UBE3A levels were enriched for functions in gene regulation, DNA binding, and brain morphology. Importantly, we found that altering UBE3A levels had a profound epigenetic effect on the methylation levels of up to half of known imprinted genes. Genes with differential H2A.Z peaks in SH(15M) compared to SH-SY5Y were enriched for ubiquitin and protease functions and associated with autism, hypoactivity, and energy expenditure. Together, these results support a genome-wide epigenetic consequence of altered UBE3A levels in neurons and suggest that UBE3A regulates an imprinted gene network involving DNA methylation patterning and H2A.Z deposition.
Project description:Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of neuronal E3 ligase UBE3A. Restoring UBE3A levels is a potential disease-modifying therapy for AS and has recently entered clinical trials. There is paucity of data regarding the molecular changes downstream of UBE3A, hampering elucidation of disease therapeutics and biomarkers. Notably, UBE3A plays an important role in the nucleus but its targets have yet to be elucidated. Using proteomics, we assessed changes during postnatal cortical development in an AS mouse model. Pathway analysis revealed dysregulation of proteasomal and tRNA synthetase pathways at all postnatal brain developmental stages, while synaptic proteins were altered in adults. We confirmed pathway alterations in an adult AS rat model across multiple brain regions and highlighted region-specific differences. The top hits were altered in human AS patient neurons, supporting disease translation. UBE3A reinstatement in AS mice resulted in near complete and partial rescue of the proteome alterations in adolescence and adults respectively, supporting the notion that early restoration of UBE3A expression provides is a promising therapeutic option. We show that Transketolase (TKT), one of the most abundantly altered proteins, is a direct UBE3A substrate and is elevated in the neuronal nucleus of rat brains and human iPSC derived neurons. Taken together, our study provides a comprehensive map of UBE3A driven changes in AS across development and species, and corroborates UBE3A reinstatement as a viable therapeutic option.