Project description:Protein kinases (PKs) are involved in plant growth and stress responses, and constitute one of the largest superfamilies due to numerous gene duplications. However, limited PKs have been functionally described in pecan, an economically important nut tree. Here, the comprehensive identification, annotation and classification of the entire pecan kinome was reported. A total of 967 PK genes were identified from pecan genome, and further classified into 20 different groups and 121 subfamilies using the kinase domain sequences, which were verified by the phylogenetic analysis. The receptor-like kinase (RLK) group contained 565 members, which constituted the largest group. Gene duplication contributed to the expansion of pecan kinome, 169 duplication events including 285 PK genes were found, and Ka/Ks ratio revealed they experienced strong negative selection. GO functional analysis indicated majority PKs involved in molecular functions and biological processes. The RNA-Seq data of PK genes in pecan were further analyzed at subfamily level, and different PK subfamilies performed various expression patterns across different conditions or treatments, suggesting PK genes in pecan involved in multiple biological functions and stress responses. Taken together, this study provided insight into the expansion, evolution and function of pecan PKs. Our findings regarding expansion, expression and co-expression analyses could lay a good foundation for future research to understand the roles of pecan PKs, and find the key candidate genes more efficiently.
Project description:Analysis of transcriptional response of virus-infected cassava and identification of putative sources of resistance for cassava brown streak disease
Project description:Analysis of transcriptional response of virus-infected cassava and identification of putative sources of resistance for cassava brown streak disease transcriptome analysis of two varieties of cassava that differ in their level of resistance to cassava brown streak virus.
Project description:Over the last decade, more than half of humans infected with highly pathogenic avian influenza (HPAI) H5N1 viruses have died, and yet virus-induced host signaling has yet to be clearly elucidated. Airway epithelia are known to produce inflammatory mediators that contribute to HPAI H5N1-mediated pathogenicity, but a comprehensive analysis of the host response in this cell type is lacking. Here, we leveraged a systems biology method called weighted gene correlation network analysis (WGCNA) to identify and statistically validate signaling sub-networks that define the dynamic transcriptional response of human bronchial epithelial cells after infection with influenza A/Vietnam/1203/2004 (H5N1, VN1203). A detailed examination of two sub-networks involved in the immune response and keratin filament formation revealed potential novel mediators of HPAI H5N1 pathogenesis, and additional experiments validated upregulation of these transcripts in response to VN1203 infection in C57BL/6 mice. Using emergent network properties, we provide fresh insight into the host response to HPAI H5N1 virus infection, and identify novel avenues for perturbation studies and potential therapeutic intervention of fatal HPAI H5N1 disease. Calu-3 cells were infected with VN1203 influenza virus and profiled at 0, 3, 7, 12, 18, and 24 hours post infection. There are 3 mock and infected replicates for each time point.
Project description:A comprehensive analysis of metabolomics and transcriptomics reveals a novel crizotinib resistance mechanism in non-small cell lung cancer
| PRJNA775993 | ENA
Project description:Transcriptome analysis of disease resistance Pecan
Project description:Porcine cytomegalovirus (PCMV; genus Cytomegalovirus, subfamily Betaherpesvirinae, family Herpesviridae) is an immunosuppressive virus that mainly inhibits the immune function of T lymphocytes and macrophages, which has caused great distress to the farming industry. In this study, we obtained the miRNA expression profiles of PCMV-infected and control porcine macrophages, PCMV-infected and control porcine tissues via high-throughput sequencing. The comprehensive analysis of miRNA profiles showed that 306 miRNA database annotated and 295 novel pig-encoded miRNAs were detected. Gene Ontology (GO) analysis of the target genes of miRNAs in PCMV infected porcine macrophages showed that the differentially expressed miRNAs are mainly involved in immune and metabolic process. This is the first report of the miRNA transcriptome in PCMV infected porcine macrophages and PCMV infected tissues and the analysis of the miRNA regulatory mechanism during PCMV infection. Further research into the regulatory mechanisms of miRNAs during immunosuppressive viral infections will contribute to the treatment and prevention of immunosuppressive viruses. miRNA expression profiling of PCMV-infected and control porcine macrophages; PCMV-infected and control porcine tissues via high-throughput sequencing.
Project description:A. Esteban Hernandez-Vargas & Michael Meyer-Hermann. Innate Immune System Dynamics to Influenza Virus. IFAC Proceedings Volumes 45, 18 (2012).
The understanding of how influenza virus infection activates the immune system is crucial to designing prophylactic and therapeutic strategies against the infection. Nevertheless, the immune response to influenza virus infection is complex and remains largely unknown. In this paper we focus in the innate immune response to influenza virus using a mathematical model, based on interferon-induced resistance to infection of respiratory epithelial cells and the clearance of infected cells by natural killers. Simulation results show the importance of IFN-I to prevent new infections in epithelial cells and to stop the viral explosion during the first two days after infection. Nevertheless, natural killers response might be the most relevant for the first depletion in viral load due to the elimination of infected cells. Based on the reproductive number, the innate immune response is important to control the infection, although it would not be enough to clear completely the virus. The effective coordination between innate and adaptive immune response is essential for the virus eradication.
Project description:Transcriptome analysis reveals the response mechanism of Frl-mediated resistance to Fusarium oxysporum f. sp. radicis-lycopersici (FORL) infection in tomato