ABSTRACT: High-Throughput Sequencing of 16S rRNA gene: Methanogenic potential of organic fraction of municipal solid waste generated in a large city of a developing country
Project description:We reported the gene expression profile of T47D cells treated with the organic extract of Particulate matter 2.5 (PM2.5) sampled next to the municipal solid waste incineration plant of Bologna city. Based on a air pollution distribution model that takes the incinaration plant as point source of emission, two sites were chosen to sample particulate matter near incineration plant: "FrulloEst" representing the maximum effect of the incineration plant, "Calamosco" representing the negative control of "FrulloEst" (minimun effect of incineration plant, same effect of other air pollution fonts). Another site, "Giardini Margherita", is chosen to sample the urban background air pollution. for each site sample collection was performed in winter and in summer season.
Project description:The spread of antibiotic resistance genes (ARG) into agricultural soils, products, and foods severely limits the use of organic fertilizers in agriculture. In this study, experimental land plots were fertilized, sown, and harvested for two consecutive agricultural cycles using either mineral or three types of organic fertilizers: sewage sludge, pig slurry, or composted organic fraction of municipal solid waste. The analysis of the relative abundances of more than 200,000 ASV (Amplicon Sequence Variants) allowed the identification of a small, but significant (<10%) overlap between soil and fertilizer microbiomes, particularly in soils sampled the same day of the harvest (post-harvest soils). Loads of clinically relevant ARG were significantly higher (up to 100 fold) in fertilized soils relative to the initial soil. The highest increases corresponded to post-harvest soils treated with organic fertilizers, and they correlated with the extend of the contribution of fertilizers to the soil microbiome. Edible products (lettuce and radish) showed low, but measurable loads of ARG (sul1 for lettuces and radish, tetM for lettuces). These loads were minimal in mineral fertilized soils, and strongly dependent on the type of fertilizer. We concluded that at least part of the observed increase on ARG loads in soils and foodstuffs were actual contributions from the fertilizer microbiomes. Thus, we propose that adequate waste management and good pharmacological and veterinarian practices may significantly reduce the potential health risk posed by the presence of ARG in agricultural soils and plant products.
2021-07-09 | GSE179685 | GEO
Project description:Biogas microbiome under extreme ammonia levels from the organic fraction of municipal solid waste
| PRJNA613576 | ENA
Project description:microorganisms in municipal solid waste