Project description:Global amphibian declines and extinction events are currently occurring at an unprecedented rate. While various factors are influencing these declines, one factor that is readily identifiable is disease. Specifically, the fungal pathogen Batrachochytrium dendrobatidis is thought to play a major role in amphibian declines in tropical and neotropical regions of the globe. While the effects of this chytrid fungus have been shown to be devastating, certain individuals and relict populations have shown resistance. This resistance has been attributed in part to the cutaneous microbiome. Many identified bacterial species that make up the microbiome have shown anti-B. dendrobatidis activity in vitro. One bacteria that is commonly associated as being a member of the amphibian microbiome across amphibian species and shows such anti-B. dendrobatidis activity is Serratia marcescens. Here, we look at transcriptomic shifts in gene expression of S. marcescens (high homology to strain WW4) in response to both live and heat-killed B. dendrobatidis.
2016-07-11 | GSE84057 | GEO
Project description:Listeria species persistence
| PRJNA692370 | ENA
Project description:Environmental DNA-RNA dynamics provide insights for effective monitoring of marine invasive species
Project description:Amphibian populations around the world are threatened by an emerging infectious pathogen, the chytrid fungus Batrachochytrium dendrobatidis (Bd). How can a fungal skin infection kill such a broad range of amphibian hosts? And why are certain species particularly susceptible to the impacts of Bd? Here we use a genomics approach to understand the genetic response of multiple susceptible frog species to Bd infection. We characterize the transcriptomes of two closely-related endangered frog species (Rana muscosa and Rana sierrae) and analyze whole genome expression profiles from frogs in controlled Bd-infection experiments. We integrate the Rana results with a comparable dataset from a more distantly-related susceptible species (Silurana tropicalis). We demonstrate that Bd-infected frogs show massive disruption of skin function and show no evidence of a robust immune response. The genetic response to infection is shared across the focal susceptible species, suggesting a common effect of Bd on susceptible frogs.
Project description:Amphibian populations around the world are threatened by an emerging infectious pathogen, the chytrid fungus Batrachochytrium dendrobatidis (Bd). How can a fungal skin infection kill such a broad range of amphibian hosts? And why are certain species particularly susceptible to the impacts of Bd? Here we use a genomics approach to understand the genetic response of multiple susceptible frog species to Bd infection. We characterize the transcriptomes of two closely-related endangered frog species (Rana muscosa and Rana sierrae) and analyze whole genome expression profiles from frogs in controlled Bd-infection experiments. We integrate the Rana results with a comparable dataset from a more distantly-related susceptible species (Silurana tropicalis). We demonstrate that Bd-infected frogs show massive disruption of skin function and show no evidence of a robust immune response. The genetic response to infection is shared across the focal susceptible species, suggesting a common effect of Bd on susceptible frogs. A total of five (12-plex) chips were analyzed from 60 samples comprising 2 conditions (control and infected), 3 tissues (skin, liver and spleen) and 2 timepoints (early and late). Three biological replicates were used for each condition and tissue at each time point. Twentyfour arrays were analyzed for skin samples, 24 for liver, and 12 for spleen. The same dye, Cy5, was used for all samples.
Project description:Chytridiomycosis is an emerging infectious disease of amphibians caused by the chytrid Batrachochytrium dendrobatidis (Bd). The disease has been associated with global amphibian declines and is driving the species in the wild to extinction. Using DNA microarray technology we have analysed transcriptional changes in Xenopus tropicalis during the course (7 and 42 days) of infection by Bd under warm (26oC) and cold (18oC) temperatures.
Project description:The persistence of Campylobacter jejuni in the natural environment, despite its microaerophilic nature, continues to be a subject of active investigation. Its survival and persistence likely stem from a combination of factors, including interactions with amoebae. C. jejuni transiently interacts with Acanthamoebae and this is thought to provide protection against unfavourable conditions and prime the bacteria for interactions with warm-blooded hosts. Acanthamoebae play vital roles in ecosystems by preying on microorganisms and establishing ecological niches with various bacterial species, some of which are clinically important pathogens. To gain a better understanding on the role of Acanthamoebae in the persistence of C. jejuni in the natural environment, we examined their interactions at the molecular level.
2024-06-28 | GSE262802 | GEO
Project description:MobiSeq to investigate relatedness within an amphibian species
Project description:Latent tuberculosis infection (LTBI) relies on a homeostasis of macrophages and Mycobacterium tuberculosis (Mtb). The small heat shock protein, Mtb Hsp16.3 (also known as latency-associated antigen), plays an important role in Mtb persistence within macrophages. However, the mechanism of LTBI remains elusive. The aim of this study was to delineate LTBI-related miRNA expression in U937 macrophages expressing Mtb Hsp16.3 protein. This study intends to explore the potential function of miRNAs in the interaction of macrophages with Mtb Hsp16.3 and provide insights for investigating the role of macrophage homeostasis in LTBI.