Project description:In this study, we used the illumina high throughput sequencing approach (Sequencing-By-Synthesis, or SBS) to develop the sequence resource of black pepper. To identify micro RNAs functioning in stress response of the black pepper plant, small RNA libraries were prepared from the leaf and root of Phytophthora capsici infected plants, leaves from drought stressed and control plants.
2017-08-24 | GSE65782 | GEO
Project description:Fruit Transcriptome of Black Pepper
| PRJNA873239 | ENA
Project description:Degradome sequencing of unripe Black pepper fruit
Project description:In this study, we have evaluated the proteomic changes that occur in Piper nigrum L.(black pepper) after infection by the pathogen Phytophthora capsici. We report novel leaf proteins from black pepper identified by an integrated transcriptome-assisted label-free quantitative proteomics pipeline. Several previously described methods were used to create this data set. Detached leaves were inoculated with either mock treatment, or the oomycete pathogen and small tissue samples only around the site of inoculation were collected for protein sample preparations. In order to quantify protein abundance in the samples being compared, we used a label free method of spiking samples with a known ratio of pre-digested peptide samples to normalize endogenous protein abundance in the MS detection. Our study attempts to explain the basal immune components of black pepper when challenged with P. capsici.
Project description:To facilitate the functional annotation of the pepper genome, analysis of miRNAs was performed for the sequenced data from five small RNA libraries described above, representing five different tissues. Starting with a set of 5,436 plant mature miRNA sequences available in miRBase, we annotated with high confidence 176 pepper miRNAs from 64 families, of which 30 families are computationally predicted to target TFs, suggesting important roles of these miRNA families in post-transcriptional gene regulation and transcription networks consistent with previous findings. To identify genomic regions generating small RNAs, we applied previously described analytical strategies to five small RNA libraries from different tissues. Developing roots, stems and mature leaves were collected from plants grown in soil in a green house at 22 °C with a 16 hr light cycle and harvested from plants at full-bloom stage. Mature plants were harvested for fully open flowers. Additional flowers were allowed to self-pollinate and fruit was harvested in the breaker stage (thirty days after pollination when the fruit was turning red). Total RNA for different tissues was isolated from the frozen root samples by using the Trizol Reagent (Invitrogen) according to manufacturer’s instructions, and libraries were constructed using the Small RNA Sample Prep Kit (Illumina, San Diego, CA) as previously described, then sequenced on an Illumina HiSeq2000 system.
Project description:Pepper fruits at four different developmental stages were collected: early fruit [EF; 1 cm long; 7 days after pollination (dap)], mature green fruit (MG; 6-7 cm length; 20 dap), breaking or turning red fruit (BR; fruit are partially red; 35 dap), and red ripe fruit (RR; fully red; 40 dap). Tomato fruits at corresponding developmental stages were also collected: EF (less than 1cm; 7 dap), MG (40 dap), BR (50 dap), and RR (55 dap). For the monitoring of fruit-specific and fruit ripening-related genes, we did array hybridization by using the leaves as a common reference and each corresponding fruit developmental stage sample.