Project description:This study compared the genome of Streptomyces rimosus rimosus against that of Streptomyces coelicolor. It also compared 4 strains with changes in oxytetracycline production and derived from G7, the type strain, against G7. Keywords: Comparative genomic hybridization
Project description:We identified genome-wide binding regions of NdgR in Streptomyces coelicolor using chromatin immunoprecipitation sequencing (ChIP-seq). We constructed 6×myc-tagged NdgR strain using homologous recombination with myc-tagging vector. Analysis of the sequencing data aligned to Streptomyces coelicolor genome database (NC_003888).
Project description:This SuperSeries is composed of the following subset Series: GSE33992: Streptomyces griseus transcriptome analysis in solid culture with delta adpA, encoding a global transcriptional regulator involved in morphological differentiation and secondary metabolism GSE33993: Streptomyces griseus transcriptome analysis in liquid culture with delta adpA, encoding a global transcriptional regulator involved in morphological differentiation and secondary metabolism GSE34036: Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in Streptomyces [liquid] GSE34037: Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in Streptomyces [solid] Refer to individual Series
Project description:The focus of this submission is to genetically identify the population fingerprint of the contemporary population and sub-populations of Northern Lebanon. To this end, the HumanOmniExpress 12 array has been used to comprehensively genotype 344 selected samples from different communities. The samples were collected with careful scrutiny to their heritage, documenting at least two generations of ancestry for each sample.
Project description:Biofilms are ubiquitous in natural, medical, and engineering environments. While most antibiotics that primarily aim to inhibit cell growth may result in bacterial drug resistance, biofilm inhibitors do not affect cell growth and there is less chance of developing resistance. This work sought to identify novel, non-toxic and potent biofilm inhibitors from Streptomyces bacteria for reducing the biofilm formation of Pseudomonas aeruginosa PAO1. Out of 4300 Streptomyces strains, one species produced and secreted peptide(s) to inhibit P. aeruginosa biofilm formation by 93% without affecting the growth of planktonic cells. Global transcriptome analyses (DNA microarray) revealed that the supernatant of the Streptomyces 230 strain induced phenazine, pyoverdine, and pyochelin synthesis genes. Electron microscopy showed that the supernatant of Streptomyces 230 strain reduced the production of polymeric matrix in P. aeruginosa biofilm cells, while the Streptomyces species enhanced swarming motility of P. aeruginosa. Therefore, current study suggests that Streptomyces bacteria are an important resource of biofilm inhibitors as well as antibiotics.
Project description:Two component sensor-response regulator systems (TCSs) are very common in the genomes of the Streptomyces species that have been fully sequenced to date. It has been suggested that this large number is an evolutionary response to the variable environment that Streptomyces encounter in soil. Notwithstanding this, TCSs are also more common in the sequenced genomes of other Actinomycetales when these are compared to the genomes of most other eubacteria. In this study, we have used DNA/DNA genome microarray analysis to compare fourteen Streptomyces species and one closely related genus to Streptomyces coelicolor in order to identify a core group of such systems. This core group is compared to the syntenous and non-syntenous TCSs present in the genome sequences of other Actinomycetales in order to separate the systems into those present in Actinomycetales in general, the Streptomyces specific systems and the species specific systems. Horizontal transfer does not seem to play a very important role in the evolution of the TCS complement analyzed in this study. However, cognate pairs do not necessarily seem to evolve at the same pace, which may indicate the evolutionary responses to environmental variation may be reflected differently in sequence changes within the two components of the TCSs. The overall analysis allowed subclassification of the orphan TCSs and the TCS cognate pairs and identification of possible targets for further study using gene knockouts, gene overexpression, reporter genes and yeast two hybrid analysis.
Project description:We report the mRNA and small RNA transcriptomes of Streptomyces coelicolor, Streptomyces avermitilis, and Streptomyces venezuelae. We identified dozens of new conserved sRNAs and antisense RNAs, including a prominent group of antisense RNAs termed ‘cutoRNAs’ that result from overlap of the 3′ ends of convergently transcribed mRNAs. In addition, we observed abundant unique ncRNAs, including many within secondary metabolic gene clusters.