Project description:The intent was to study, from transcriptome analysis, shade and drought responses in Solanum tuberosum (potato). We performed Illumina 50 bp single-end RNA-seq in tissues of control and treated var. Spunta wild-type plants. Drought experiments also included two independent AtBBX21-overexpressing (BBX21-OE) potato lines.
Project description:Cassava is a drought–resistant food crop in tropical and subtropical regions. Although cassava is a relatively drought-tolerant species, the development and yields are greatly affected by the adverse drought conditions. Information about molecular breeding will obtain by studying genetic regulatory mechanism. In this study, we demonstrate the drought-tolerant mechanisms in leaves of both cassava varieties(Xinxuan048 and KU50) by using RNA-Seq technique. 1,880 and 2,066 differentially expressed genes(DEGs) were induced by drought stress in leaves of KU50 and Xinxuan048, respectively. DEGs in the response to drought stress involve in many regulated pathways. ROS- and ABA-associated signaling pathways and photosynthesis-associated regulation are mainly elucidated. In addition, alternative splicing and ingle nucleotide polymorphism also involve in drought-stress responses in both cassava varieties, showing their important roles in response to drought stress in leaves. This study not only increases the understanding of physiological and molecular mechanisms to the drought response in cassava, but also lays a solid foundation on the breeding of drought-resistant varieties using molecular methods.
Project description:Traditional rice varieties found in India have many desirable characteristics. Amongst them, their differential responses to abiotic and biotic stresses are of great agricultural importance. Drought or osmotic stress is one of the major abiotic stresses afflicting crop plants in India. Indigenous varieties like Dagad deshi have been found to be drought resistant and, thereby, are being studied in great detail by plant breeders and biotechnologists alike. In this study, we have analyzed the transciptomes of two contrasting cultivars, i.e. Dagad deshi (tolerant) and IR20 (susceptible), under control and stress conditions to elucidate the differences in their responses to drought stress using Affymetrix microarray platform.
Project description:Systems responses of mature leaves from 4 reference cultivars of a larger collection of European potato cultivars (Solanum tuberosum L.) are investigated by metabolome profiling and RNA-Sequencing. The chosen reference cultivars, Milva, Alegria, Desiree, and Saturna, vary in ascending order in regard to drought tolerance. Systems analyses are based on 3 independent field trials and 3 paralleled greenhouse trials. Robust responses across all cultivars and conditions to natural seasonal drought stress comprise proline, raffinose, galactinol, arabitol, arabinonic acid, chlorogenic acid, and 102 transcripts which consist to a high proportion of heat shock proteins and genes with signaling or regulatory functions, such as a homolog of abscisic acid receptor PYL4. Constitutive differences of the tolerant cultivars, Desiree and Saturna, compared to the sensitive cultivars include arbutin (hydroquinone-beta-D-glucopyranoside), octopamine (p-hydroxyphenylethanolamine), ribitol and 248 differential transcripts. Many of these transcripts are disease related, receptor kinases, or regulatory genes, for example a homolog of the Arabidopsis FOUR LIPS MYB-regulator of stomatal cell proliferation. Functional enrichment analyses imply that heat stress is a major acclimation component of potato leaves to agronomical relevant drought stress. Enhanced leaf heat stress is a result of drought caused by loss of transpiration cooling. This effect and CO2-limitation are the main dilemmas of drought- or ABA-induced stomatal closure. Constitutive differences between tolerant and sensitive cultivars indicate partially synergistic interactions of drought and biotic stress responses. We suggest that drought tolerance of the potato reference cultivars may be caused by general resistance mechanisms which are part of previously selected pathogen tolerance. Transcriptome profiling by RNA-sequencing of 48 leaf samples from 4 potato cultivars grown under control or drought stress conditions in 6 independent experiments
Project description:Systems responses of mature leaves from 4 reference cultivars of a larger collection of European potato cultivars (Solanum tuberosum L.) are investigated by metabolome profiling and RNA-Sequencing. The chosen reference cultivars, Milva, Alegria, Desiree, and Saturna, vary in ascending order in regard to drought tolerance. Systems analyses are based on 3 independent field trials and 3 paralleled greenhouse trials. Robust responses across all cultivars and conditions to natural seasonal drought stress comprise proline, raffinose, galactinol, arabitol, arabinonic acid, chlorogenic acid, and 102 transcripts which consist to a high proportion of heat shock proteins and genes with signaling or regulatory functions, such as a homolog of abscisic acid receptor PYL4. Constitutive differences of the tolerant cultivars, Desiree and Saturna, compared to the sensitive cultivars include arbutin (hydroquinone-β-D-glucopyranoside), octopamine (p-hydroxyphenylethanolamine), ribitol and 248 differential transcripts. Many of these transcripts are disease related, receptor kinases, or regulatory genes, for example a homolog of the Arabidopsis FOUR LIPS MYB-regulator of stomatal cell proliferation. Functional enrichment analyses imply that heat stress is a major acclimation component of potato leaves to agronomical relevant drought stress. Enhanced leaf heat stress is a result of drought caused by loss of transpiration cooling. This effect and CO2-limitation are the main dilemmas of drought- or ABA-induced stomatal closure. Constitutive differences between tolerant and sensitive cultivars indicate partially synergistic interactions of drought and biotic stress responses. We suggest that drought tolerance of the potato reference cultivars may be caused by general resistance mechanisms which are part of previously selected pathogen tolerance.
Project description:Cuticular waxes coating leaf surfaces can help tolerate drought events by reducing non-stomatal water loss. Despite their role in drought tolerance, little is known about the cuticular wax responses of Canadian bread wheat varieties. To fill in this gap, RNAseq was performed on the flag leaf of four modern varieties to identify potential markers that could be used for selection of higher accumulation of cuticular waxes. This analysis revealed that the W1 locus is a good candidate for higher accumulation of β-diketones.
Project description:Drought is one of the main climate threats for crop plant production limitation. Climate change models predict constant global warming accompanied by strong reduction in water availability, especially for agricultural needs. Potato belongs to crop plants that are considered as sensitive to water shortage. Global estimation analyses show that drought may decrease potato yield by 18-32% in the period of 2040-2069 (Hijmans, 2003, Obidiegwu et al. 2015, Front in Plant science). Crop models predict that potato yields may reduce by ~30% as a result of water deficit in Poland (http://www.climateadaptation.eu/poland/agriculture-and-horticulture/). Genetic variability between potato cultivars has been described regarding their tolerance to drought (Soltys-Kalina et al. 2016). To diminish the effect of forecasted potato harvest losses, it is crucial to identify as many as possible potato plant strategies to withstand long drought periods during vegetative season. For this reason, we decided to analyse the expression differences in transcriptomes independently in two selected pairs of potato cultivars, Gwiazda/Oberon and Tajfun/Owacja. Cultivars in each pair are closely related to each other (having one parent in common or one grandparent in common, respectively) but differ in their sensitivity to drought conditions. In this paper, we identified at least 24 top selected genes whose expression profiles differ significantly during drought period when closely related studied cultivars are compared. Moreover, all but one of selected potato genes have their homologues in Arabidopsis plant genome. We found that A. thaliana mutants with mostly downregulated expression of seven selected homologous genes differ in their response to drought. To our knowledge, all of these genes were until now not reported as drought-related. Thus, our original approach and obtained results allowed to identify new players in plant response to drought.
Project description:In this study we compare the transcriptome response of two potato varieties Atlantic and NY138 to the infection by Candidatus Liberibacter solanacearum. Four weeks old potato plant grown in growth chamber were infested with potato psyllid to transmit the pathogen Candidatus Liberibacter solanacearum. Three weeks after infestation leaf samples were collected for RNA extraction and transcriptome analysis. This is the first transcriptome study on this potato disease.