Project description:An updated representation of S. meliloti metabolism that was manually-curated and encompasses information from 240 literature sources, which includes transposon-sequencing (Tn-seq) data and Phenotype MicroArray data for wild-type and mutant strains.
Project description:The first GSSM of V. vinifera was reconstructed (MODEL2408120001). Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases.
Project description:iJN1462 (i) incorporates several hundred additional genes and associated reactions resulting in new predictive capabilities, including new nutrients supporting growth; (ii) was validated by in vivo growth screens that included previously untested carbon (48) and nitrogen (41) sources; (iii) yielded gene essentiality predictions showing large accuracy when compared with a knock-out library and Bar-seq data; and (iv) allowed mapping of its network to 82 P. putida sequenced strains revealing functional core that reflect the large metabolic versatility of this species, including aromatic compounds derived from lignin.
Project description:We used HEK293T cells stably expressing eIF4A1 with a 3*FLAG tag at the NH2 terminal. The cells were pull-down assayed by the Sel-TCP-seq method which combines TCP-seq and immunopurification, and the resulting eIFA1-bound 48S complexes were assessed by label-free mass spectrometry.