Project description:Here we used Ptch1+/-/ETV7TG/+/- mice with enhanced incidence of RMS to generate a model of pleomorphic RMS driven by haploinsufficiency of the lysosomal sialidase Neu1. These tumors share features and location with human RMS.
Project description:Rhabdomyosarcoma (RMS) describes rare soft-tissue tumors that exhibit features of skeletal muscle differentiation. The most common subtypes in children are alveolar and embryonal rhabdomyosarcoma, with the alveolar subtype characterized by PAX3/7 fusions. A lesser known and rarer subtype, pleomorphic rhabdomyosarcoma (PRMS), occurs most frequently in adults vetween the ages of 40 and 50. This pleomorphic subtype is often misdiagnosed and little is known about its molecular characterization. Here, we conducted comprehensive genomic, transcriptomic, and methylation profiling of these tumors.
Project description:Rhabdomyosarcomas (RMS) represent a family of aggressive soft tissue sarcomas that present in both the pediatric and adult setting. Pathologic risk stratification for RMS has been based on histologic subtype, with poor outcomes observed in alveolar rhabdomyosarcoma (ARMS) and adult-type pleomorphic rhabdomyosarcoma (PRMS) compared to embryonal rhabdomyosarcoma (ERMS). Recent genomic sequencing studies have expanded the spectrum of RMS, with several new molecularly defined entities, including fusion-driven spindle cell/sclerosing rhabdomyosarcoma (SC/SRMS) and MYOD1-mutant SC/SRMS. Comprehensive genomic analysis has previously defined the mutational and copy number spectrum for the more common ERMS and ARMS, as well as revealed corresponding methylation signatures. In contrast, genetic and epigenetic correlates have not been defined for the rare SC/SRMS or PRMS histologic subtypes. Herein, we present genomic sequencing, copy number analysis, and methylation profiling of the largest cohort of molecularly characterized RMS samples to date. We identified two novel methylation subtypes, one having SC/SRMS histology and defined by MYOD1 p. L122R mutations and the other matching adult type PRMS. Selected tumors from adolescent patients grouped with the PRMS methylation class, expanding the age range of these rare tumors. Pediatric patients in the MYOD1-mutant group, as well as those clustering with PRMS, appear to have poor overall survival.
Project description:Analysis of undifferentiated pleomorphic sarcoma/malignant fibrous histiocytoma-like tumors from LSL-KrasG12D, p53Fl/Fl mouse model of soft tissue sarcoma. Murine soft tissue sarcomas (n = 17) were compared to normal muscle (n = 4). Tumors were isolated surgically from soft tissue sarcomas generated by conditional Kras and p53 alleles. Tumors were induced using an adenovirus expressing Cre recombinase. Normal muscle samples were isolated from mice of the same genotype without tumor induction.
Project description:Analysis of undifferentiated pleomorphic sarcoma/malignant fibrous histiocytoma-like tumors from LSL-KrasG12D, p53Fl/Fl mouse model of soft tissue sarcoma.