Project description:Using WGBS we investigated blood DNA methylation profiles of Cooinda the Alpine dingo and determined putative regulatory elements (unmethylated regions, UMRs, and lowly methylated regions, LMRs).
Project description:Using WGBS we investigated blood DNA methylation profiles of Canis lupus dingo and determined putative regulatory elements (unmethlated regions (UMRs) and lowly methylated regions (LMRs).
Project description:DNA methylation is critical for development and is strongly associated with gene regulation. Variation in the DNA methylome between closely related species may reveal unique functional adaptation. We have implemented a novel inter-primate DNA methylation genome-wide analysis between human, chimpanzee and rhesus macaque to identify human species-specific Differentially Methylated Regions (human s-DMRs) in orthologous loci. We analysed the peripheral blood cell DNA methylomes of these primates and identified 22,758 hypomethylated and 15,858 hypermethylated human s-DMRs. These s-DMRs are globally enriched within weak promoter, enhancer and transcribed regions via comparison with ChromHMM segmentation. Human s-DMRs, (both hypo- and hypermethylated) are found to be more prevalent in CpG Island shores than within the islands themselves (?2 P = 1.80 x 10-32). Examining human-specific Transcription Factor Binding Site motif change within CpG islands, we show gain and loss, in hypomethylated and hypermethylated s-DMRs, respectively, of CTCF motifs. Epigenetically the most divergent human-specific locus was the immunological Leukotriene B4 receptor (LTB4R, aka BLT1 receptor), due to collocating hypomethylated s-DMRs within the promoter CpG island and shore, as well as inverse increased gene body methylation. This gene is vital in host immune responses and associated with the pathogenesis of a wide range of human inflammatory diseases. This finding was supported by additional neutrophil-only DNA methylome and lymphoblastoid H3K4me3 chromatin comparative data. Functional investigation of the consequences of these epigenetic differences identified this receptor to have increased expression, and have a higher response to the LTB4 ligand in human versus rhesus macaque peripheral blood mononuclear cells. This result further emphasises the exclusive nature of the human immunological system, its divergent adaptation even from closely related primates, and the power of comparative epigenomics to identify and understand human uniqueness. DNA methylome analysis of pooled Human, Chimpanzee and Macaque
Project description:Purpose: We characterized genome-wide DNA methylation profiles (methylome) in purified peripheral blood monocytes (PBMs) from 18 healthy postmenopausal Caucasian females aged 50-56 years. Methods: DNA methylome of Human Peripheral Blood Monocytes were generated by methylated DNA immunoprecipitation combined with high-throughput sequencing (MeDIP-seq), using Illumina GAIIx. The sequence reads that passed quality filters were analyzed using MEDIPS package. Targeted methylation validation analysis was performed by using MassARRAY EpiTYPER assays. Genome-wide gene expression profiles have been obtained for 7 of the 18 subjects by using Affymetrix 1.0 Human Exon ST arrays following the manufacturer's recommended protocols. Results: Using MeDIP-seq,a total of approximately 283 million reads were uniquely aligned to human genome (Build NCBI37, HG19), resulting in average ~16 million uniquely aligned high quality reads per sample. Distinct patterns were revealed at different genomic features. For instance, promoters were commonly (~58%) found to be unmethylated; whereas protein coding regions were largely (~84%) methylated. We found that approximately 24% CpG islands (CGIs) were highly methylated in PBMs. Further characterization of CGIs with respect to their relative locations to RefSeq genes revealed that the highly methylated CGIs were largely enriched (~89%) in CGIs located in gene bodies and intergenic regions. By integration of the methylome data with genome-wide PBM gene expression data, we found negative correlation between promoter methylation levels and gene transcription levels when comparing groups of genes with different expression levels, and this relationship was consistently observed across promoters with high to low CpG densities. Furthermore, we observed a modest but significant excess (permutation p<0.0001) of genes showing negative correlation between inter-individual promoter methylation and transcription levels, particularly for genes associated with CpG-rich promoters. Across the 18 individual PBM methylomes, we also identified genomic regions that were constitutively highly methylated in PBMs as well as regions showing large inter-individual variability. Conclusions: This study represents a comprehensive analysis of the PBM methylome and our data provides a valuable resource for future epigenomic and multi-omic studies exploring biological and disease-related regulatory mechanisms in PBMs. DNA methylome of human peripheral blood monocytes were generated by MeDIP-seq, using Illumina GAIIx.
Project description:Land cover change has long been recognized that marked effect the amount of soil organic carbon. However, little is known about microbial-mediated effect processes and mechanism on soil organic carbon. In this study, the soil samples in a degenerated succession from alpine meadow to alpine steppe meadow in Qinghai-Tibetan Plateau degenerated, were analyzed by using GeoChip functional gene arrays.