Project description:A prototype oligonucleotide microarray was designed to detect and identify viable bacterial species with the potential to grow of common beer spoilage microorganisms from the genera Lactobacillus, Megasphaera, Pediococcus and Pectinatus. Probes targeted the intergenic spacer regions (ISR) between 16S and 23S rRNA, which were amplified in a combination of reverse transcriptase (RT) and polymerase chain reaction (PCR) prior to hybridization. This method allows the detection and discrimination of single bacterial species in a complex sample. Furthermore, microarrays using oligonucleotide probes targeting the ISR allow the distinction between viable bacteria with the potential to grow and non-growing bacteria. The results demonstrate the feasibility of oligonucleotide microarrays as a contamination control in food industry for the detection and identification of spoilage microorganisms within mixed population. Keywords: microarray, oligonucleotide, species-specific, detection, beer spoilage bacteria
Project description:Aiming to reduce food spoilage, the present study developed novel highly active food-grade preservatives affecting a wide range of bacteria. For this purpose, storage proteins were extracted from food plants. After enzymatic hydrolysis by the digestive protease chymotrypsin, the peptide profiles were analyzed by ultrahigh-performance micro-liquid chromatography–triple quadrupole time-of-flight tandem mass spectrometry. Virtual screening identified 21 potential antimicrobial peptides in chickpea legumin. Among those, the peptides Leg1 (RIKTVTSFDLPALRFLKL) and Leg2 (RIKTVTSFDLPALRWLKL) exhibited antimicrobial activity against 16 different bacteria, including pathogens, spoilage-causing bacteria and two antibiotic-resistant strains. Minimum inhibitory concentrations (MIC) down to 15.6 µM indicated 10–1,000-fold higher activity of the novel antimicrobial peptides compared to conventional food preservatives. Moreover, Leg1 and Leg2 showed bactericidal activity in bacterial suspension and during the storage of raw pork meat.
Project description:Bacillus weihenstephanensis is a subspecies of the Bacillus cereus sensu lato group of spore forming bacteria known to cause food spoilage or food poisoning. The key distinguishing phenotype of B. weihenstephanensis is its ability to grow below 7°C or, from a food safety perspective, to grow and potentially produce toxins in a refrigerated environment. In order to gain insight into to the mechanistic basis of its psychrotolerant phenotype, as well as elucidate relevant aspects of its toxigenic profile, the proteome profiles of cells grown at either 6°C or 30°C were compared.
Project description:Early detection of spoilage microorganisms and food pathogens is of major importance in preventing food recalls and foodborne outbreaks. Although constant effort is invested in developing sensitive methods for rapid microbial detection, none of the current methods enables the detection of food pathogens within a few hours; therefore, development of innovative early-warning food-testing strategies are needed. Herein, we assessed a novel strategy that harnesses the microbiome signature of a food product to determine deviations in the abundance of particular community members and detect production defects. Employing the production process of barbecued (BarBQ) pastrami as a model, we characterized the microbiome profiles of the product along the production line using next-generation sequencing of the 16S rRNA gene, concentrating on the live microbiota. Following the establishment of a microbiome dataset representing a properly produced product, we were able to identify shifts in the microbiome profile of a defective batch produced under potassium lactate deficiency. With the identification of Vibrio and Lactobacillus as potential indicator bacteria for potassium lactate deficiency, rapid qPCR assays were designed for their quantification. Aligned with the microbiome profiling results, these qPCR assays were effective for rapid identification of a defective production event. This implies the use of rapid quantification targeting microbiome profile-derived indicator bacteria for in-house detection of defective batches and identification of food-safety and quality events with results obtained on the same day. The suggested strategy should pave the way toward safer and more efficient food-production systems.