Project description:Understanding the bacterial community structure, and their functional analysis for active bioremediation process is essential to design better and cost effective strategies. Microarray analysis enables us to simultaneously study the functional and phylogenetic markers of hundreds of microorganisms which are involved in active bioremediation process in an environment. We have previously described development of a hybrid 60-mer multibacterial microarray platform (BiodegPhyloChip) for profiling the bacterial communities and functional genes simultaneously in environments undergoing active bioremediation process (Pathak et al; Appl Microbiol Biotechnol,Vol. 90, 1739-1754). The present study involved profiling the status of bacterial communities and functional (biodegradation) genes using the developed 60-mer oligonucleotide microarray BiodegPhyloChip at five contaminated hotspots in the state of Gujarat, in western India. The expression pattern of functional genes (coding for key enzymes in active bioremediation process) at these sites was studied to understand the dynamics of biodegradation in the presence of diverse group of chemicals. The results indicated that the nature of pollutants and their abundance greatly influence the structure of bacterial communities and the extent of expression of genes involved in various biodegradation pathways. In addition, site specific factors also play a pivotal role to affect the microbial community structure as was evident from results of 16S rRNA gene profiling of the five contaminated sites, where the community structure varied from one site to another drastically.
Project description:To determine whether and how warming affects the functional capacities of the active microbial communities, GeoChip 5.0 microarray was used. Briefly, four fractions of each 13C-straw sample were selected and regarded as representative for the active bacterial community if 16S rRNA genes of the corresponding 12C-straw samples at the same density fraction were close to zero.
Project description:Background: While the luminal microbiome composition in the human cervicovaginal tract has been defined, the presence and impact of tissue-adherent ectocervical microbiota remain incompletely understood. Studies of luminal and tissue-associated bacteria in the gastrointestinal tract suggest that they may have distinct roles in health and disease. Here, we performed a multi-omics characterization of paired luminal and tissue samples collected from a clinically well-characterized cohort of Kenyan women. Results: We identified a tissue-adherent bacterial microbiome, with a higher alpha diversity than the luminal microbiome, in which dominant genera overall included Gardnerella and Lactobacillus, followed by Prevotella, Atopobium, and Sneathia. About half of the L. iners dominated luminal samples had a corresponding Gardnerella dominated tissue microbiome. Broadly, the tissue-adherent microbiome was associated with fewer differentially expressed host genes than the luminal microbiome. Gene set enrichment analysis revealed that L. crispatus-dominated tissue-adherent communities were associated with protein translation and antimicrobial activity, whereas a highly diverse microbiome was associated with epithelial remodeling and pro-inflammatory pathways. Communities dominated by L. iners and Gardnerella were associated with low host transcriptional activity. Tissue-adherent microbiomes dominated by Lactobacillus and Gardnerella correlated with host protein profiles associated with epithelial barrier stability, and with a more pro-inflammatory profile for the Gardnerella-dominated microbiome group. Tissue samples with a highly diverse composition had a protein profile representing cell proliferation and pro-inflammatory activity. Conclusion: We identified ectocervical tissue-adherent bacterial communities in all study participants. These communities were distinct from cervicovaginal luminal microbiota in a significant proportion of individuals. This difference could possibly explain that L. iners dominant luminal communities have a high probability of transitioning to high diverse bacterial communities including high abundance of Gardnerella. By performing integrative multi-omics analyses we further revealed that bacterial communities at both sites correlated with distinct host gene expression and protein levels. The tissue-adherent bacterial community is similar to vaginal biofilms that significantly impact women’s reproductive and sexual health.
Project description:The rate, timing, and mode of species dispersal is recognized as a key driver of the structure and function of communities of macroorganisms, and may be one ecological process that determines the diversity of microbiomes. Many previous studies have quantified the modes and mechanisms of bacterial motility using monocultures of a few model bacterial species. But most microbes live in multispecies microbial communities, where direct interactions between microbes may inhibit or facilitate dispersal through a number of physical (e.g., hydrodynamic) and biological (e.g., chemotaxis) mechanisms, which remain largely unexplored. Using cheese rinds as a model microbiome, we demonstrate that physical networks created by filamentous fungi can impact the extent of small-scale bacterial dispersal and can shape the composition of microbiomes. From the cheese rind of Saint Nectaire, we serendipitously observed the bacterium Serratia proteamaculans actively spreads on networks formed by the fungus Mucor. By experimentally recreating these pairwise interactions in the lab, we show that Serratia spreads on actively growing and previously established fungal networks. The extent of symbiotic dispersal is dependent on the fungal network: diffuse and fast-growing Mucor networks provide the greatest dispersal facilitation of the Serratia species, while dense and slow-growing Penicillium networks provide limited dispersal facilitation. Fungal-mediated dispersal occurs in closely related Serratia species isolated from other environments, suggesting that this bacterial-fungal interaction is widespread in nature. Both RNA-seq and transposon mutagenesis point to specific molecular mechanisms that play key roles in this bacterial-fungal interaction, including chitin utilization and flagellin biosynthesis. By manipulating the presence and type of fungal networks in multispecies communities, we provide the first evidence that fungal networks shape the composition of bacterial communities, with Mucor networks shifting experimental bacterial communities to complete dominance by motile Proteobacteria. Collectively, our work demonstrates that these strong biophysical interactions between bacterial and fungi can have community-level consequences and may be operating in many other microbiomes.
Project description:Disrupted interactions between host and intestinal bacteria are implicated in the development of colorectal cancer (CRC). However, the functional impacts of these inter-kingdom interactions remain poorly defined. To examine this interplay, we performed mouse and microbiota RNA-sequencing on colon tissue from germ-free (GF) and gnotobiotic ApcMin/+;Il10-/- mice associated with microbes from biofilm-positive human CRC tumor (BT) and biofilm-negative healthy (BX) tissues. The bacteria in BT mice differentially expressed >2,900 genes related to bacterial secretion, virulence and biofilms, but only affected 62 host genes. Importantly, the bacterial communities from BT mice were transmissible and carcinogenic when administered to a new GF ApcMin/+;Il10-/- cohort, maintaining a set of 13 bacterial genera. Our findings suggest complex interactions within bacterial communities affecting bacterial composition and CRC development.
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients.
Project description:We report the sequencing of bacterial species across four environments in which C9orf72 loss of function mice were studied as well as mice that received fecal transplantation. Our study elucidates bacterial communities that associate with pro-inflammatory or pro-survival outcomes in this model of ALS/FTD with features of autoimmunity and systemic and neural inflammation.
2020-03-24 | GSE147325 | GEO
Project description:The diversity of river plankton bacterial and eukaryotic communities