Project description:We used illumina-based next generation sequencing technology to to identify the regions bound by HSFA1b in the Arabidopsis genome. We sequenced HSFA1b chromatin immunoprecipitated genomic sequences under non-stress and heat stress conditions to understand the changes in the HSFA1b binding map when the growth conditions are switched from favorable to heat stress. We show that the binding map of HSFA1b in the Arabidopsis genome is subject to reconfiguration when the growth conditions are switched from non-stress to heat stress response. We also show that HSFA1b is targeting genes involved in developmental processes beside genes involved in stress response under both conditions indicating that HSFA1b possibly regulates the expression of both developmental and stress genes under non-stress and under heat stress, possibly for a limited duration prior heat acclimation.
Project description:Heat shock factors (Hsfs) are known to regulate heat and drought stress response by controlling the expression of heat shock proteins and oxidative stress responsive genes. Loss-of-function of OsHSFA2e gene resulted in increased sensitivity of rice plants to drought and heat stress. To identify the targets of OsHSFA2e and dissect the stress response pathway regulated by it, we performed transcriptome profiling of Oshsfa2e mutant plants under drought stress as well as well-watered conditions by RNA-sequencing.
Project description:Gmdnj1-knockout mutants had diminished growth in normal conditions, and when under heat stress, exhibited more severe browning, reduced chlorophyll contents, higher reactive oxygen species (ROS) contents, and higher induction of heat stress-responsive transcription factors and ROS-scavenging enzyme-encoding genes. Knocking out a major HSP40 may lead to the impairment of the protein refolding system, and in turn lead to a change in the aggregated protein profile. Therefore, the aggregated protein profiles of the Gmdnj1 mutant lines were compared against that of the wild type Williams 82 under both untreated and heat-treated conditions.
Project description:Dnmt2 genes are highly conserved tRNA methyltransferases with biological roles in cellular stress responses. The absence of obvious mutant phenotypes under laboratory conditions suggested a function for Dnmt2 under non-physiological conditions. Indeed, Dnmt2 has recently been implicated in various aspects of the cellular stress response and the tRNA methyltransferase activity of Dnmt2 has been shown to interfere with stress-induced fragmentation of various tRNAs. We used adult animals and small RNA sequencing during a heat stress experiment to determine the tRNA fragment abundance and identities in wild-type and Dnmt2 mutant somatic tissues. Dnmt2 mutants produced tRNA fragments with different identities when compared to wild-type controls, indicating the accumulation of non-physiological tRNA-derived molecules in tissues without Dnmt2. 6 samples examined: heterozygous and Dnmt2 mutant under control, heat shock and recovery conditions
Project description:In HuntingtonM-bM-^@M-^Ys disease (HD), polyglutamine expansions in the huntingtin (Htt) protein cause subtle changes in cellular functions that, over-time, lead to neurodegeneration and death. Studies have indicated that activation of the heat shock response can reduce many of the effects of mutant Htt in disease models, suggesting that the heat shock response is impaired in the disease. To understand the basis for this impairment, we have used genome-wide chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) to examine the effects of mutant Htt on the master regulator of the heat shock response, HSF1. We find that, under normal conditions, HSF1 function is highly similar in cells carrying either wild-type or mutant Htt. However, polyQ-expanded Htt severely blunts the HSF1-mediated stress response. Surprisingly, we find that the HSF1 targets most affected upon stress are not directly associated with proteostasis, but with cytoskeletal binding, focal adhesion and GTPase activity. Our data raise the intriguing hypothesis that the accumulated damage from life-long impairment in these stress responses may contribute significantly to the etiology of Huntington's disease. ChIP-Seq experiments for HSF-1 were performed in striatal cells that express either wild-type or mutant Htt using ChIP-Seq technology under normal (33M-BM-0C) and heat shock (42M-BM-0C for six hours) conditions. The cells were crosslinked with 1% formaldehyde and immunoprecipitated using antibody sc-9144 (Santa Cruz Biotech) for HSF-1. Sequencing was performed using the Illumina Genome Analyzer II.
Project description:Korean peninsular weather is rapidly becoming subtropical due to global warming. In summer 2018, South Korea experienced the highest temperatures since the meteorological observations recorded in 1907. Heat stress has a negative effect on Holstein cows, the most popular breed of dairy cattle in South Korea, which is susceptible to heat. To examine physiological changes in dairy cows under heat stress conditions, we analyzed the profiles circulating microRNAs isolated from whole blood samples collected under heat stress and non-heat stress conditions using small RNA sequencing. We compared the expression profiles in lactating cows under heat stress and non-heat stress conditions to understand the regulation of biological processes in heat-stressed cows. Moreover, we measured several heat stress indicators, such as rectal temperature, milk yield, average daily gain, and progesterone concentration. All these assessments showed that pregnant cows were more susceptible to heat stress than non-pregnant cows. Particularly, progesterone concentrations known to have maternal warming effects were at similar levels in non-pregnant cows but significantly increased in pregnant cows under heat stress conditions. The differentially expressed miRNAs and their putative target genes were analyzed in pregnant cows. Interestingly, we found that differentially expressed miRNAs (bta-miR-146b, bta-miR-20b, bta-miR-29d-3p, bta-miR-1246) specifically targeted progesterone biosynthesis (StAR) and the function of corpus luteum-related genes (CCL11, XCL), suggesting that pregnant cows with elevated progesterone concentrations are more susceptible to heat stress. In addition, we found the differential expression of 11 miRNAs (bta-miR-19a, bta-miR-19b, bta-miR-30a-5p, and several from the bta-miR-2284 family) in both pregnant and non-pregnant cows under heat stress conditions. In target gene prediction and gene set enrichment analysis, these miRNAs were found to be associated with the cytoskeleton, cell junction, vasculogenesis, cell proliferation, ATP synthesis, oxidative stress, and immune responses involved in heat response. These miRNAs can be used as potential biomarkers for heat stress.
Project description:The intent of the experiment was to infer from DNA sequencing the occurrence of extra-chromosomal DNA from Arabidopsis thaliana's heat-activated LTR retrotransposon Onsen/COPIA78. For this, we performed Illumina 150 bp pair-end PCR-free DNA genome re-sequencing, in both wild-type Col-0 and RdDM mutant nrpd1-3 under control and heat stress.
Project description:Dnmt2 genes are highly conserved tRNA methyltransferases with biological roles in cellular stress responses. The absence of obvious mutant phenotypes under laboratory conditions suggested a function for Dnmt2 under non-physiological conditions. Indeed, Dnmt2 has recently been implicated in various aspects of the cellular stress response and the tRNA methyltransferase activity of Dnmt2 has been shown to interfere with stress-induced fragmentation of various tRNAs. We used adult animals and small RNA sequencing during a heat stress experiment to determine the tRNA fragment abundance and identities in wild-type and Dnmt2 mutant somatic tissues. Dnmt2 mutants produced tRNA fragments with different identities when compared to wild-type controls, indicating the accumulation of non-physiological tRNA-derived molecules in tissues without Dnmt2.