Project description:Relentless mining operations have destroyed our environment significantly. Soil inhabiting microbes play a significant role in ecological restoration of these areas. Microbial weathering processes like chemical dissolution of rocks significantly promotes the soil properties and enhances the rock to soil ratio respectively. Earlier studies have reported that bacteria exhibit efficient rock-dissolution abilities by releasing organic acids and other chemical elements from the silicate rocks. However, rock-dissolving mechanisms of the bacterium remain to be unclear till date. Thus, we have performed rock-dissolution experiments followed by genome and transcriptome sequencing of novel Pseudomonas sp.NLX-4 strain to explore the efficiency of microbe-mediated habitat restoration and its molecular mechanisms underlying this biological process. Results obtained from initial rock dissolution experiments revealed that Pseudomonas sp. NLX-4 strain efficiently accelerates the dissolution of silicate rocks by secreting amino acids, exopolysaccharides, and organic acids with elevated concentrations of potassium, silicon and aluminium elements. The rock dissolution experiments of NLX-4 strain exhibited an initial increase in particle diameter variation values between 0-15 days and decline after 15 days-time respectively. The 6,771,445-base pair NLX-4 genome exhibited 63.21 GC percentage respectively with a total of 6041 protein coding genes. Genome wide annotations of NLX-4 strain exhibits 5045-COG, 3996-GO, 5342-InterPro, 4386-KEGG proteins respectively Transcriptome analysis of NLX-4 cultured with/without silicate rocks resulted in 539 (288-up and 251-down) differentially expressed genes (DEGs). Fifteen DEGs encoding for siderophore transport, EPS and amino acids synthesis, organic acids metabolism, and bacterial resistance to adverse environmental conditions were highly up-regulated by cultured with silicate rocks. This study has not only provided a new strategy for the ecological restoration of rock mining areas, but also enriched the applicable bacterial and genetic resources.
2020-08-07 | GSE155316 | GEO
Project description:Grassland Ecological Restoration Management Science and Technology Support Project of Gansu Province (2021GSLY)
| PRJNA1013135 | ENA
Project description:Herbaceous vegetation is more suitable for rapid and efficient soil restoration: an evidence of ecological restoration of quarries in Yanshan Mountains, China
| PRJNA857463 | ENA
Project description:Herbaceous vegetation is more suitable for rapid and efficient soil restoration an evidence of ecological restoration of quarries in Yanshan Mountains, China
Project description:Morphine causes microbial dysbiosis. In this study we focused on restoration of native microbiota in morphine treated mice and looked at the extent of restoration and immunological consequences of this restoration. Fecal transplant has been successfully used clinically, especially for treating C. difficile infection2528. With our expanding knowledge of the central role of microbiome in maintenance of host immune homeostasis17, fecal transplant is gaining importance as a therapy for indications resulting from microbial dysbiosis. There is a major difference between fecal transplant being used for the treatment of C. difficile infection and the conditions described in our studies. The former strategy is based on the argument that microbial dysbiosis caused by disproportionate overgrowth of a pathobiont can be out-competed by re-introducing the missing flora by way of a normal microbiome transplant. This strategy is independent of host factors and systemic effects on the microbial composition. Here, we show that microbial dysbiosis caused due to morphine can be reversed by transplantation of microbiota from the placebo-treated animals.