Project description:It has long been recognized that species occupy a specific ecological niche within their ecosystem. The ecological niche is defined as the number of conditions and resources that limit species distribution. Within their ecological niche, species do not exist in a single physiological state but in a number of states we call the Natural Operating Range. In this paper we link ecological niche theory to physiological ecology by measuring gene expression levels of collembolans exposed to various natural conditions. The soil-dwelling collembolan Folsomia candida was exposed to 26 natural soils with different soil characteristics (soil type, land use, practice, etc). The animals were exposed for two days and gene expression levels were measured. The main factor found to regulate gene expression was the soil type (sand or clay), in which 18.5% of the measured genes were differentially expressed. Gene Ontology analysis showed animals exposed to sandy soils experience general stress, affecting cell homeostasis and replication. Multivariate analysis linking soil chemical data to gene expression data revealed that soil fertility influences gene expression. Land-use and practice had less influence on gene expression; only forest soils showed a different expression pattern. A variation in gene expression variation analysis showed overall low variance in gene expression. The large difference in response to soil type was caused by the soil physicochemical properties where F. candida experiences clay soils and sandy soils as very different from each other. This collembolan prefers fertile soils with high organic matter content, as soil fertility was found to correlate with gene expression and animals exposed to sandy soils (which, in general, have lower organic matter content) experience more general stress. Finally, we conclude that there is no such thing as a fixed physiological state for animals in their ecological niche and the boundary between the ecological niche and a stressed state depends on the genes/pathways investigated.
Project description:It has long been recognized that species occupy a specific ecological niche within their ecosystem. The ecological niche is defined as the number of conditions and resources that limit species distribution. Within their ecological niche, species do not exist in a single physiological state but in a number of states we call the Natural Operating Range. In this paper we link ecological niche theory to physiological ecology by measuring gene expression levels of collembolans exposed to various natural conditions. The soil-dwelling collembolan Folsomia candida was exposed to 26 natural soils with different soil characteristics (soil type, land use, practice, etc). The animals were exposed for two days and gene expression levels were measured. The main factor found to regulate gene expression was the soil type (sand or clay), in which 18.5% of the measured genes were differentially expressed. Gene Ontology analysis showed animals exposed to sandy soils experience general stress, affecting cell homeostasis and replication. Multivariate analysis linking soil chemical data to gene expression data revealed that soil fertility influences gene expression. Land-use and practice had less influence on gene expression; only forest soils showed a different expression pattern. A variation in gene expression variation analysis showed overall low variance in gene expression. The large difference in response to soil type was caused by the soil physicochemical properties where F. candida experiences clay soils and sandy soils as very different from each other. This collembolan prefers fertile soils with high organic matter content, as soil fertility was found to correlate with gene expression and animals exposed to sandy soils (which, in general, have lower organic matter content) experience more general stress. Finally, we conclude that there is no such thing as a fixed physiological state for animals in their ecological niche and the boundary between the ecological niche and a stressed state depends on the genes/pathways investigated. Test animals were exposed to 26 natural soils + 2 control soils. 4 biological replicates per soil containing 25 grams of soil and 30 23-day-old animals per replicate, RNA was isolated after two days of exposure. for the micro-array hybridization design we made use of an interwoven loop design. from the four replicates per soil two were labeled with Cy3 and 2 with Cy5. It was made sure that now two replicates of the same soil were ever hybridized against the same soil.
Project description:Investigation of the phylogenetic diversity of Acidobacteria taxa using PCR amplicons from positive control 16S rRNA templates and total genomic DNA extracted from soil and a soil clay fraction
2010-01-01 | GSE18711 | GEO
Project description:Soill microbial diversity of ecological restoration in high-cold mining area
| PRJNA1107975 | ENA
Project description:Population genomics of Sitka black-tailed deer supports invasive species management and ecological restoration on islands
| PRJNA803424 | ENA
Project description:Influence of ecological restoration on soil microbes
Project description:Investigation of the phylogenetic diversity of Acidobacteria taxa using PCR amplicons from positive control 16S rRNA templates and total genomic DNA extracted from soil and a soil clay fraction A ten chip study using PCR amplicons from cloned 16S rRNA genes and from diverse soil 16S rRNAs, with PCR primers specific to the Division Acidobacteria. Each chip measures the signal from 42,194 probes (in triplicate) targeting Acidobacteria division, subdivision, and subclades as well as other bacterial phyla. All samples except one (GSM464591) include 2.5 M betaine in the hybridization buffer. Pair files lost due to a computer crash.
Project description:Keemun black tea is a fully fermented tea. These LC-MS data help us know the chemical diversity during processing of Keemun black tea.
Project description:The inherent diversity of canines is closely intertwined with the unique color patterns of each dog population. These variations in color patterns are believed to have originated through mutations and selective breeding practices that occurred during and after the domestication of dogs from wolves. To address the significant gaps that persist in comprehending the evolutionary processes that underlie the development of these patterns, we generated and analyzed deep-sequenced genomes of 113 Korean indigenous Jindo dogs that represent five distinct color patterns to identify the associated mutations in CBD103, ASIP, and MC1R. The degree of linkage disequilibrium and estimated allelic ages consistently indicate that the black-and-tan dogs descend from the first major founding population on Jindo island, compatible with the documented literature. We additionally demonstrate that black-and-tan dogs, in contrast to other color variations within the breed, exhibit a closer genetic affinity to ancient wolves from western Eurasia than those from eastern Eurasia. Lastly, population-specific genetic variants with moderate effects were identified, particularly in loci associated with traits underlying body size and behavioral variations, potentially explaining the observed phenotypic diversity based on coat colors. Overall, comparisons of whole genome sequences of each coat color population diverged from the same breed provided an unprecedented glimpse into the properties of evolutionary processes maintaining variation in Korean Jindo dog populations that were previously inaccessible.