Project description:Aggregate gland, major ampullate gland, and fat body tissue RNA-seq data from Argiope aurantia and Argiope trifasciata. Raw sequence reads
Project description:There are two major competing explanations for the counter-intuitive presence of bright coloration in certain orb-web spiders. Bright coloration could lure insect prey to the web vicinity, increasing the spider's foraging success. Alternatively, the markings could function as disruptive camouflage, making it difficult for the insect prey to distinguish spiders from background colour variation. We measured the prey capture rates of wasp spiders, Argiope bruennichi, that were blacked out, shielded from view using a leaf fragment, or left naturally coloured. Naturally coloured spiders caught over twice the number of prey as did either blacked-out or leaf-shielded spiders, and almost three times as many orthopteran prey. Spectrophotometer measurements suggest that the bright yellow bands on the spider's abdomen are visible to insect prey, but not the banding on the legs, which could disguise the spider's outline. Thus, our results provide strong support for the hypothesis that bright coloration in the wasp spider acts as a visual lure for insect prey and weak support for the hypothesis that the arrangement of the banding pattern across the spider's body disguises the presence of the spider on the web.
Project description:Monogynous mating systems (low male mating rates) occur in various taxa and have evolved several times independently in spiders. Monogyny is associated with remarkable male mating strategies and predicted to evolve under a male-biased sex ratio. While male reproductive strategies are well documented and male mating rates are easy to quantify, especially in sexually cannibalistic species, female reproductive strategies, the optimal female mating rate, and the factors that affect the evolution of female mating rates are still unclear. In this study, we examined natural female mating rates and tested the assumption of a male-biased sex ratio and female polyandry in a natural population of Argiope bruennichi in which we controlled female mating status prior to observations. We predicted variation in female mating frequencies as a result of spatial and temporal heterogeneity in the distribution of mature females and males. Females had a low average mating rate of 1.3 and the majority copulated only once. Polyandry did not entirely result from a male-biased sex-ratio but closely matched the rate of male bigamy. Male activity and the probability of polyandry correlated with factors affecting pheromone presence such as virgin females' density. We conclude that a strong sex ratio bias and high female mating rates are not necessary components of monogynous mating systems as long as males protect their paternity effectively and certain frequencies of bigyny stabilise the mating system.
Project description:Reproduction often requires finding a mating partner. To this end, females of many arthropods advertise their presence to searching males via volatile chemical signals. Such pheromones are considered low-cost signals, although this notion is based on little evidence and has recently been challenged. Even when using comparatively low-cost signals, females should signal as little as possible to minimize costs while still ensuring mate attraction. Here, we test the strategic-signalling hypothesis using Argiope bruennichi. In this orb-weaving spider, egg maturation commences with adult moult, and females that do not attract a male in time will lay a large batch of unfertilized eggs approximately three weeks after maturation. Using GC-MS analyses, we show that virgin females enhance their signalling effort, i.e. pheromone quantity per unit body mass, with increasing age and approaching oviposition. We further demonstrate that pheromone release is condition dependent, suggesting the occurrence of physiological costs. Mate choice assays revealed that pheromone quantity is the only predictor of female attractiveness for males. In support of the strategic-signalling hypothesis, pheromone signals by female A. bruennichi become stronger with increased need as well as body condition, and might thus qualify as an honest signal of female quality.
| S-EPMC8767209 | biostudies-literature
Project description:Genome of the wasp spider, Argiope bruennichi
| PRJNA629526 | ENA
Project description:Venomics of the wasp spider Argiope bruennichi