Project description:We report the application of transcriptome sequencing technology for high-throughput profiling of Serratia marcescens for producing prodigiosin. By obtaining over 163 million bases of sequence from Serratia marcescens genome DNA, we generated transcriptome -state maps of Serratia marcescens 12h cells, 24h cells, and 36h cells at 30C and 37C,respectively. We explored the mechanism of S. marcescens response temperature regulation at the transcription level through transcriptome sequencing technology. We found that the pig gene cluster at low temperature would favor at the transcriptional level, however, higher temperature resulting in instability and loss of enzyme activity. Numerous amino acid metabolic pathways involved in prodigiosin biosynthesis in S. marcescens responded to temperature changes, and metabolic fluxes were directed towards prodigiosin biosynthesis. At the same time, quorum sensing, two-component regulatory system and sRNA were stimulated by temperature to regulate PG biosynthesis and involve strain virulence and exclusive genes. Moreover, inhibition factors was the one reason for S. marcescens incapable synthesis of prodigiosin at 37C. This study laid a good foundation for understanding the biological functions of prodigiosin, improving the temperature tolerance of industrial strains, and excavating temperature-sensitive regulatory elements.
Project description:The EepR protein is a two-component response regulator protein in the bacterium Serratia marcescens. Mutation of the eepR gene results in pleiotropic changes including reduced expression of secondary metabolites and proteases.
Project description:The GumB protein is an IgaA-family member that negatively regulates the Rcs stress response system in the bacterium Serratia marcescens. Mutation of the gumB gene results in increased RCs system activity of numerous genes including those involved in flagellar based motility and capsular polysaccharide formation.