Project description:Heldt2018 - Proliferation-quiescence decision
in response to DNA damage
This model is described in the article:
A comprehensive model for
the proliferation-quiescence decision in response to endogenous
DNA damage in human cells.
Heldt FS, Barr AR, Cooper S, Bakal
C, Novák B.
Proc. Natl. Acad. Sci. U.S.A. 2018 Feb;
:
Abstract:
Human cells that suffer mild DNA damage can enter a
reversible state of growth arrest known as quiescence. This
decision to temporarily exit the cell cycle is essential to
prevent the propagation of mutations, and most cancer cells
harbor defects in the underlying control system. Here we
present a mechanistic mathematical model to study the
proliferation-quiescence decision in nontransformed human
cells. We show that two bistable switches, the restriction
point (RP) and the G1/S transition, mediate this decision by
integrating DNA damage and mitogen signals. In particular, our
data suggest that the cyclin-dependent kinase inhibitor p21
(Cip1/Waf1), which is expressed in response to DNA damage,
promotes quiescence by blocking positive feedback loops that
facilitate G1 progression downstream of serum stimulation.
Intriguingly, cells exploit bistability in the RP to convert
graded p21 and mitogen signals into an all-or-nothing
cell-cycle response. The same mechanism creates a window of
opportunity where G1 cells that have passed the RP can revert
to quiescence if exposed to DNA damage. We present experimental
evidence that cells gradually lose this ability to revert to
quiescence as they progress through G1 and that the onset of
rapid p21 degradation at the G1/S transition prevents this
response altogether, insulating S phase from mild, endogenous
DNA damage. Thus, two bistable switches conspire in the early
cell cycle to provide both sensitivity and robustness to
external stimuli.
This model is hosted on
BioModels Database
and identified by:
MODEL1703030000.
To cite BioModels Database, please use:
Chelliah V et al. BioModels: ten-year
anniversary. Nucl. Acids Res. 2015, 43(Database
issue):D542-8.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:We identify here host genomic regions that are more likely to be damaged during an infection with the human gastirc pathogen Helicobacter pylori and characterize underlying features of them. By ChIP-seq we obtained global information about the localization of the DNA-damage marker H2AXpS139. We used 20 ng of immunoprecipitated DNA of the human gastric cell line AGS to produce 240 mio sequence reads in total and compared the damage-pattern of 6 h and 19 h infected cells with that of 10 Gy irradiated ones. While the overall levesl of DNA damage wetre similar in terms of broken DNA and accumulation of H2AXpS139, infection-induced damage clearly accumulates towards the ends of chromosomal arms, namely telomere-proximal and close to centromeres, it also enriches mainly in genic and especially in transcribed regions. We show, taht this damage pattern is unique to the infection, occurs also in human non-transformed gastric epithelial cells and shows some correlation with previously identified cancer-related genes. Examination of a DNA-damage induced histone modification from four different conditions.
Project description:DNA topological stress inhibits DNA replication fork (RF) progression and contributes to DNA replication stress. In Saccharomyces cerevisiae we demonstrate that centromeric DNA and the rDNA array are especially vulnerable to DNA topological stress during replication. The activity of the SMC complexes cohesin and condensin are linked to both the generation and repair of DNA topological stress linked damage in these regions. At cohesin enriched centromeres cohesin activity causes the accumulation of DNA damage, RF rotation and precatenation, confirming that cohesin dependent DNA topological stress impacts on normal replication progression. In contrast, at the rDNA cohesin and condensin activity inhibit the repair of damage caused by DNA topological stress. We propose that as well as generally acting to ensure faithful genetic inheritance, SMCs can disrupt genome stability by trapping DNA topological stress.
Project description:The CENP-T/-W histone fold complex, as an integral part of the inner kinetochore, is essential for building a proper kinetochore at the centromere in order to direct chromosome segregation during mitosis. Notably, CENP-T/-W is not inherited at centromeres and new deposition is absolutely required at each cell cycle for kinetochore function. However, the mechanisms underlying this new deposition of CENP-T/-W at centromeres are unclear. Here, we find that CENP-T deposition at centromeres is uncoupled from DNA synthesis. We identify Spt16 and SSRP1, subunits of the H2A-H2B histone chaperone FACT, as CENP-W binding partners through a proteomic screen. We find that the C-terminal region of Spt16 binds specifically to the histone fold region of CENP-T/-W. Furthermore, depletion of Spt16 impairs CENP-T and CENP-W deposition at endogenous centromeres and site directed targeting of Spt16 alone is sufficient to ensure local de novo CENP-T accumulation. We propose a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres.
Project description:Centromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily-conserved histone H3 variant, which directs kinetochore assembly and hence, centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity selected solubilised fission yeast CENP-ACnp1 chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2. In addition to a role in maintenance of CENP-ACnp1 chromatin integrity at endogenous centromeres, Hap2 is required for de novo assembly of CENP-ACnp1 chromatin on naïve centromere DNA and promotes H3 turnover on centromere regions and other loci prone to CENP-ACnp1 deposition. Prior to CENP-ACnp1 chromatin assembly, Hap2 is required for transcription from centromere DNA. These analyses suggest that Hap2-Ino80 destabilises H3 nucleosomes on centromere DNA through transcription-mediated histone H3 turnover, driving the replacement of resident H3 nucleosomes with CENP-ACnp1 nucleosomes. These inherent properties define centromere DNA by directing a program that mediates CENP-ACnp1 assembly on appropriate sequences.
Project description:We identify here host genomic regions that are more likely to be damaged during an infection with the human gastirc pathogen Helicobacter pylori and characterize underlying features of them. By ChIP-seq we obtained global information about the localization of the DNA-damage marker H2AXpS139. We used 20 ng of immunoprecipitated DNA of the human gastric cell line AGS to produce 240 mio sequence reads in total and compared the damage-pattern of 6 h and 19 h infected cells with that of 10 Gy irradiated ones. While the overall levesl of DNA damage wetre similar in terms of broken DNA and accumulation of H2AXpS139, infection-induced damage clearly accumulates towards the ends of chromosomal arms, namely telomere-proximal and close to centromeres, it also enriches mainly in genic and especially in transcribed regions. We show, taht this damage pattern is unique to the infection, occurs also in human non-transformed gastric epithelial cells and shows some correlation with previously identified cancer-related genes.
Project description:We show that confined migration results in predominantly decreased chromatin accessibility, consistent with the increased heterochromatin marks staining. A small fraction of ATAC-seq peaks shows increased accessibility at gene promoters of diverse pathways, such as chromatin silencing, tumor invasion, and DNA damage response; whereas the majority shows decreased accessibility at intergenic regions near centromeres or telomeres, suggesting possible heterochromatin spreading.
Project description:The centromere is a defining feature of eukaryotic chromosomes and is essential for the segregation of chromosomes during cell division. Centromeres are universally marked by the histone variant cenH3 and are restricted to specialized chromatin that most commonly localized to a single position along the chromosome. However, the DNA on which centromeric nucleosomes assemble is not conserved and varies greatly in size and composition. It ranges from genetically defined point centromeres that assemble a single cenH3-containing nucleosome to epigenetically defined regional centromeres embedded in megabases of tandemly repeated DNA to holocentromeres that extend along the length of the entire chromosomes. The organization of regional and holocentric centromeres has so far been elusive, as the precise locations of cenH3-containing sequences could not be determined. Our results show that the point centromere is the basic unit of holocentromeres and provide a basis for understanding how centromeric chromatin is maintained. We use high-resolution mapping of cenH3-associated DNA to show that Caenorhabditids elegans holocentromeres are organized as dispersed but discretely localized point centromeres.
Project description:Centromeres are the regions of eukaryotic chromosomes where kinetochores are assembled and direct the correct segregation of chromosomes. Active centromeres are defined by presence of nucleosomes containing CENP-A, a histone H3 variant, which alone is sufficient to direct kinetochore assembly. Once assembled at a location CENP-A chromatin and the kinetochore is maintained at that location though a positive feedback loop where kinetochore proteins recruited by CENP-A promote deposition of new CENP-A following replication. Although CENP-A chromatin itself is a heritable entity, it is normally associated with specific sequences such as human alpha satellite arrays. Such analyses suggest that properties of centromeric DNA itself may favour assembly of CENP-A rather than H3 nucleosomes. To investigate the innate properties of centromeric DNA we have examined histone dynamics on this DNA assembled in CENP-A chromatin at endogenous centromeres and when assembled only in H3 chromatin at an ectopic location. We demonstrate that H3 occupancy on centromeric DNA is innately low while H3 turnover is high. Moreover, even at an ectopic location centromeric DNA programs H3 deposition in S phase and its eviction during G2 when CENP-A is otherwise deposited. G2 accumulation of RNAPII on centromeric DNA during G2 is consistent with transcription-coupled destabilisation of H3 nucleosomes to favour CENP-A deposition.