Project description:Background: Lysine succinylation of proteins has potential impacts on protein structure and function, which occurred on post-translation level. However, the information about the lysine succinylation of proteins in tea plants is limited. In the present study, the significant signal of succinylation in tea plants was found by western blot. Subsequently, we performed qualitative analyses to globally identify lysine succinylation substrates by using high accuracy nano LC-MS/MS combined with affinity purification. Results: As a result, a total of 142 lysine succinylation sites were identified in 86 proteins. The identified succinylated proteins are involved in various biological processes and a large proportion of the succinylation sites are present on proteins in the primary metabolism pathway, including glyoxylate and dicarboxylate metabolism, the tricarboxylic acid (TCA) cycle and glycine, serine and threonine metabolism. Moreover, 10 new succinylated sites on histones were detected in tea plants either. Conclusions: These results suggested that succinylated proteins in tea plants might play critical regulatory roles in biological processes, especially in the primary metabolism. This study not only globally analysed the functional annotation of lysine succinylation in tea plants, but also provided valuable information for further investigating the functions of lysine succinylation in tea plants.
Project description:In field conditions, tea plants are often exposed to drought stress, which has profound effects on the growth and development of tea plants. However, most studies on tea plants in response to drought stress focused on single gene or protein expression, and transcriptome or proteome profiles, the impact of drought stress on ubiquitination in proteins remains unearthed. We performed a global profile of ubiquitinated (Kub) proteins in tea leaves under drought stress. In total, 1,409 lysine Kub sites in 781 proteins were identified, of which 14 sites in 12 proteins were up-regulated and 123 sites in 91 proteins were down-regulated compared with drought and control. Furthermore, we analyzed the Kub proteins related to ubiquitin-mediated proteolysis, catechins biosynthesis, and carbohydrate and amino acid metabolism in tea leaves under drought stress. The results indicated that many Kub proteins involved in ubiquitin-mediated proteolysis played important roles in protein degradation. Several Kub proteins related to catechins biosynthesis were positively correlated with each other because of their co-expression and co-localization. Our study preliminarily revealed the global profiling of Kub proteins in metabolic pathways and provided an important resource for further study on the functions of Kub proteins in tea plants under drought stress.
Project description:Cysteine S-nitrosylation is a reversible protein post-translational modification and critically regulates the activity, localization and stability of proteins. Tea (Camellia sinensis (L.)) is one of the most thoroughly studied evergreen crop due to its broad non-alcoholic beverage and huge economic impact in the world. However, to date, little is known about the S-nitrosylome in this plant. Here, we performed a global analysis of cysteine S-nitrosylation in tea leaves. In total, 228 cysteine S-nitrosylation sites were identified in 191 proteins, representing the first extensive data on the S-nitrosylome in tea plants. These S-nitrosylated proteins were located in multiple subcellular compartments, especially in the chloroplast and cytoplasm. The analysis of functional enrichment and PPI network revealed that the S-nitrosylated proteins were mainly involved in carbon metabolism, especially in Calvin cycle and TCA cycle. These results suggested that S-nitrosylated proteins in tea leaves might play critical regulatory roles in the carbon metabolism. Overall, this study not only globally analyzed the functional annotation of cysteine S-nitrosylation in tea leaves, but also preliminarily provided the valuable information for further investigating the functions of cysteine S-nitrosylation in tea plants.
Project description:The transcriptome of a light sensitive tea cultivar ‘Huangjinya’ plants exposed to sunlight and shade were analyzed by high-throughput sequencing followed by de novo assembly.
2017-06-23 | GSE97659 | GEO
Project description:Sprouts development of tea plants
Project description:Background: Lysine crotonylation (Kcr), as a novel evolutionarily conserved type of PTM, is ubiquitous and essential in cell biology. However, its functions in tea plant, an important beverage crop, are largely unknown. Our study firstly attempted to describe Kcr proteins in tea leaves under NH4+ deficiency/resupply, and provided significant insights into exploring the physiological role of Kcr in plants for N utilization. Results: We performed the global analysis of crotonylome in tea plants under NH4+ deficiency/resupply using high-resolution LC-MS/MS coupled with highly sensitive immune-antibody. A total of 2288 kcr sites on 971 proteins were identified, of which contained in 15 types of Kcr motifs. Most of Kcr proteins were located in chloroplast and cytoplasm. 120 and 151 Kcr proteins were significantly changed at 3 hours and 3days of NH4+ resupply, respectively. Bioinformatics analysis showed that differentially expressed Kcr proteins participated in diverse biological processes such as photosynthesis, carbon fixation and amino acid metabolism, suggesting Kcr plays important roles in these processes. Interestingly, a large number of enzymes were crotonylated, and the activity and Kcr level of these enzymes changed significantly after NH4+ resupply, indicating a potential function of Kcr in the regulation of enzyme activities. Moreover, the protein-protein interaction analysis revealed that the diverse interactions of identified Kcr proteins mainly involved in photosynthesis, carbon fixation, amino acid metabolism and ribosome. Conclusions: The results suggested that lysine crotonylated proteins might play regulating roles in metabolic process in tea leaves under NH4+ deficiency/resupply. The critical regulatory roles mainly involved in diverse aspects of primary metabolic processes, especially in photosynthesis, carbon fixation and amino acid metabolism. The provided data may serve as important resources for exploring the physiological, biochemical, and genetic role of lysine crotonylation in tea plants.
Project description:Next generation sequencing was performed to identify genes changed in Colletotrichum camelllae upon infection tea plants. The goal of the work is to find interesting genes involved in fungal virulence. The object is to reveal the molecular mechanism of funal virulence.