Project description:Aquatic microbial communities contain a vast amount of genetic diversity and we have much to learn about how this manifests to functional diversity. Existing long-term time series data includes 16S tags, metagenomes, single amplified genomes (SAGs), and genomes from metagenomes (GFMs). Information about functional diversity and metabolic capabilities is often unavailable. The study sites include three lakes that are the subject of intense study through the North Temperate Lakes Long Term Ecological Research site: Sparkling Lake (oligotrophic), Lake Mendota (eutrophic), and Trout Bog Lake (dystrophic).
The work (proposal:https://doi.org/10.46936/10.25585/60000947) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.
Project description:ZIKV strains belong to three phylogenetic lineages: East African, West African, and Asian/American. RNA virus genomes exist as populations of genetically-related sequences whose heterogeneity may impact viral fitness, evolution, and virulence. The genetic diversity of representative ZIKVs (N=7) from each lineage was examined using next generation sequencing (NGS) paired with downstream Shannon entropy calculation and single nucleotide variant (SNV) analysis. This comprehensive analysis of ZIKV genetic diversity provides insight into the genetic diversity of ZKIV and repository of SNV positions across lineages.
Project description:The Retinoblastoma-like pocket proteins p130 and p107 act as gatekeepers of the cell cycle through their activity within the DREAM (Dp/Rb-like/E2F/MuvB) transcriptional repressor complex. The goal of this study was to address how the pocket protein contributes to DREAM complex assembly and function on chromatin by utilizing a protein null mutant of the only C. elegans pocket protein LIN-35. We performed ChIP-seq of C. elegans DRM subunits in wild-type and lin-35 null late embryos to assess the effect on their chromatin localization following loss of LIN-35.
Project description:A hallmark of RNA silencing is a class of ~22 nt RNAs which are processed from dsRNA precursor by Dicer. Accurate processing by Dicer is critical for the functionality of microRNAs (miRNAs). According to the current model, Dicer measures the length by anchoring the 3' overhang of the dsRNA terminus. Here we find that human Dicer binds to the 5' end of RNA and utilizes the 5' end as an additional reference point for cleavage site selection (5' counting rule). We further identify a novel motif (5'-pocket) in Dicer, which recognizes the 5' end of RNA. By analyzing miRNA population from 5'-pocket mutant Dicer expressing Dicer-null mES, we provide that the 5' pocket is significant for Dicer processing in vivo. Examination of small RNA profiles from Dicer-null mouse embryonic stem cells transfected with either wild-type or 5' pocket mutant Dice expression plasmids.