Project description:To investigate the effect of short distance transport on jejunal tissueof weaned piglets, We then performed gene expression profiling analysis using data obtained from RNA-seq in jejunal tissues of weaned piglets after transport and without transport
Project description:Early-weaning-induced stress causes diarrhea, thereby reduces growth performance of piglets. Gut bacterial dysbiosis emerges as a leading cause of post-weaning diarrhea. The present study was aimed to investigate the effect of capsulized fecal microbiota transportation (FMT) on gut bacterial community, immune response and gut barrier function of weaned piglets. Thirty-two were randomly divided into two groups fed with basal diet for 21 days. Recipient group was inoculated orally with capsulized fecal microbiota of health Tibetan pig daily morning during whole period of trial, while control group was given orally empty capsule. The results showed that the F/G ratio, diarrhea ratio, diarrhea index, and histological damage score of recipient piglets were significantly decreased. FMT treatment also significantly increased the colon length of piglets. Furthermore, the relative abundances of Firmicutes, Euryarchaeota, Tenericutes, Lactobacillus, Methanobrevibacter and Sarcina in colon of recipient piglets were increased, and the relative abundances of Campylobacter, Proteobacteria, and Melainabacteria were significantly decreased compared with control group.
Project description:The transcriptome changes of the ileal mucosa in suckling piglets during early postnatal life were analysed to contribute to the knowledge of a pig’s gut development. In addition, the ileal transcriptome of suckling piglets was compared with that of age-matched weaned piglets (weaned at the age of 21 days) to elucidate the effect of weaning on the developing gut. DNA microarray was used to analyse the change of transcriptome profiles and biological pathways in porcine ileum that occurred during the developmental or the weaning process.
Project description:We have developed a monoclonal antibody (mAb) C7 that reacts with Als3p and enolase present in Candida albicans cell wall and exerts three anti-Candida activities: candidacidal activity and inhibition of both adhesion and filamentation. To investigate the mode of action of mAb C7 on fungal viability, we examined changes in the genome-wide gene expression profile of C. albicans grown in presence of a subinhibitory concentration of mAb C7 (12.5 µg/ml) by using microarrays. A total of 49 genes were found to be differentially expressed upon treatment with mAb C7. Of these, 28 were found to be up-regulated and 21 down-regulated. The categories of up-regulated genes with the largest number of variations were those involved in iron uptake or related to iron homeostasis (42.86%), while the energy-related group accounted for 38.10% of the down-regulated genes (8/21). Results were validated by real time PCR. Since these effects resembled those found under iron-limited conditions, the activity of mAb C7 on C. albicans mutants with deletions in key genes implicated in the three iron acquisition systems described in this yeast was also assessed. Only mutants lacking TPK1 gene, and TPK2 to a lesser extent were less sensitive to the candidacidal effect of mAb C7. FeCl3 or hemin at concentrations ≥ 7.8µM reversed the candidacidal effect of mAb C7 on C. albicans, on a concentration dependent manner. The results presented in this study provide evidence that the candidacidal effect of mAb C7 is related to the blockage of the reductive iron uptake pathway of C. albicans.
2010-12-11 | GSE25969 | GEO
Project description:The effect of fermented bran on the growth performance and health of weaned piglets
Project description:The majority of babies in the US are formula-fed instead of breast fed. There are major differences in the composition of formulas and breast milk and yet little is known about metabolic differences in babies as the result of feeding these very different diets and how that might affect development or disease risk in later life. One concern is that soy-based formulas might have adverse health effects in babies as a result of the presence of low levels of estrogenic phytochemicals genistein and daidzein which are normally present in soy beans. In the current study, we used a piglet model to look at this question. Piglets were either fed breast milk from the sow or were fed two different infant formulas (cow's milk-based or soy-based) from age 2 days to 21 days when pigs are normally weaned onto solid food. Blood glucose and lipids were measured. Formula-fed pigs were found to have lower cholesterol than breast fed piglets and in addition had larger stores of iron in their liver.Microarray analysis was carried out to see if changes in liver gene expression could explain these effects of formula feeding. It was found that overall gene expression profiles were influenced by formula feeding compared to breast fed neonates. Gender-independent and unique effects of formula influenced cholesterol and iron metabolism. Further, soy formula feeding in comparison to milk-based formula failed to reveal any estrogenic actions on hepatic gene expression in either male or female pigs. Piglets (female, male) were either fed breast milk from the sow or were fed two different infant formulas (cow's milk-based or soy-based) from age 2 days to 21 days when pigs are normally weaned onto solid food.
Project description:Transcriptome profiling to identify Cap2/Hap43 regulons in the human fungal pathogen Candida albicans: Wild type vs. cap2D grown in iron-depleted medium
Project description:This study investigated the effect of milbemycons as efflux inhibitors and antifungal agents. Milbemycin oxims can inhibit growth of Candida glabrata and C. albicans. The effect of milbemycins on transcriptomes was inbvestigated.
Project description:Iron sequestration by host iron-binding proteins is an important mechanism of resistance to microbial infections. Inside oral epithelial cells, iron is stored within the ferritin, and is therefore usually not accessible to pathogenic microbes. We observed that the ferritin concentration within oral epithelial cells was directly related to their susceptibility to damage by the human pathogenic fungus Candida albicans. Thus, we hypothesized that host ferritin may be used as an iron source by this organism. A screen of C. albicans mutants lacking components of each of the three iron acquisition systems revealed that only the reductive pathway is involved in iron utilization from ferritin by this organism. Transcriptional profiling of wild-type and hyphal-defective C. albicans strains suggested that the C. albicans invasin-like protein Als3 plays a role in ferritin binding.