Project description:In order to compare gene expression signatures of IL-36β and IL-37, primary human keratinocytes were incubated with activated IL-36β and K53-IL-37 for 2h.
Project description:The canonical role IL-4 is to induce M2 macrophage polarization. Herein we report that in addition to its canonical role, IL-4 also induces non-canonical pro-inflammatory response via epigenetic memory. Although IL-4 stimulated macrophages do not produce classic proinflammatory cytokines such as IL-6 and IL-1b, they produce heightened proinflammatory cytokine upon LPS stimulation.
Project description:The canonical role of IL-4 is to induce M2 macrophage polarization. Herein we report that in addition to its canonical role, IL-4 also induces non-canonical pro-inflammatory response via epigenetic memory. Although IL-4 stimulated macrophages do not produce classic proinflammatory cytokines such as IL-6 and IL-1β, they produce heightened proinflammatory cytokine upon LPS stimulation.
Project description:Pattern recognition receptors (PRR) detect microbial products and induce cytokines which shape the immunological response. Interleukin-12 (IL-12), tumor necrosis factor alpha (TNF-α) and IL-1β are proinflammatory cytokines which can be essential for resistance against infection, but if produced at high levels, may contribute to immunopathology. In contrast, IL-10 is an immunosuppressive cytokine which dampens proinflammatory responses, but can also lead to defective pathogen clearance. The regulation of these cytokines is therefore central to the generation of an effective but balanced immune response. Here, we show that macrophages derived from C57BL/6 mice produce low levels of IL-12, TNF-α and IL-1β, but high levels of IL-10 in response to TLR4 and TLR2 ligands LPS and PamCSK4, and Burkholderia pseudomallei a Gram-negative bacterium which activates TLR 2/4. In contrast, macrophages derived from BALB/c mice show a reciprocal pattern of cytokine production. Differential production of IL-10 in B. pseudomallei and LPS stimulated C57BL/6 and BALB/c macrophages was due to a type I IFN dependent, but IL-27 independent mechanism. Further, type I IFN contributed to differential IL-1β and IL-12 production in B. pseudomallei and LPS stimulated C57BL/6 and BALB/c macrophages, via both IL-10-dependent and independent mechanisms. These findings highlight key pathways responsible for the regulation of pro- and anti-inflammatory cytokines in macrophages and reveal how they may differ according to the genetic background of the host. Total RNA obtained from bone-marrow derived macrophages of C57BL/6 WT, C57BL/6 Ifnar1-/- and BALB/c mice stimulated with heat-killed Burkholderia pseudomallei or media as controls.
Project description:IL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. Additionally, de novo psoriasis onset has been reported following IL-6 blockade in rheumatoid arthritis patients. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6 deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation, however this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36α/β/γ, Il24, epigen and S100a8/a9 to levels higher than those found in IL-17C+ mice. Comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin, revealed significant correlation among transcripts of psoriasis patient skin and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why arthritis patients being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective.
Project description:IL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. Additionally, de novo psoriasis onset has been reported following IL-6 blockade in rheumatoid arthritis patients. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6 deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation, however this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36α/β/γ, Il24, epigen and S100a8/a9 to levels higher than those found in IL-17C+ mice. Comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin, revealed significant correlation among transcripts of psoriasis patient skin and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why arthritis patients being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective.
Project description:Pattern recognition receptors (PRR) detect microbial products and induce cytokines which shape the immunological response. Interleukin-12 (IL-12), tumor necrosis factor alpha (TNF-α) and IL-1β are proinflammatory cytokines which can be essential for resistance against infection, but if produced at high levels, may contribute to immunopathology. In contrast, IL-10 is an immunosuppressive cytokine which dampens proinflammatory responses, but can also lead to defective pathogen clearance. The regulation of these cytokines is therefore central to the generation of an effective but balanced immune response. Here, we show that macrophages derived from C57BL/6 mice produce low levels of IL-12, TNF-α and IL-1β, but high levels of IL-10 in response to TLR4 and TLR2 ligands LPS and PamCSK4, and Burkholderia pseudomallei a Gram-negative bacterium which activates TLR 2/4. In contrast, macrophages derived from BALB/c mice show a reciprocal pattern of cytokine production. Differential production of IL-10 in B. pseudomallei and LPS stimulated C57BL/6 and BALB/c macrophages was due to a type I IFN dependent, but IL-27 independent mechanism. Further, type I IFN contributed to differential IL-1β and IL-12 production in B. pseudomallei and LPS stimulated C57BL/6 and BALB/c macrophages, via both IL-10-dependent and independent mechanisms. These findings highlight key pathways responsible for the regulation of pro- and anti-inflammatory cytokines in macrophages and reveal how they may differ according to the genetic background of the host.
Project description:We found a unique subset of effector memory (EM) CD8+ T cells that expressed high levels of IL-6 receptor in human peripheral blood. These cells which also expressed high levels of IL-7Ra (referred to as IL-6R high IL-7Rahigh cells) had the a distinct gene expression profile and cellular characteristics compared to other EM CD8+ T cells. IL-6R high IL-7Ra high cells were early differentiated EM CD8+ T cells with decreased expression of T-bet, KLRG1, perforin and granzyme B. These cells had increased cell proliferation likely secondary to enhanced IL-2 production and high affinity IL-2R expression. IL-6R high IL-7Ra high EM CD8+ T cells exclusively produced high levels of IL-2, IL-5, IL-9 and IL-13 although IFN-r was produced by this cell subset and other EM CD8+ T cells. Of interest, IL-6R high IL-7Ra high EM CD8+ T cells expanded in the peripheral blood of patients with chronic obstructive pulmonary disease (COPD) and asthma where CD8+ T cells, IL-13 and IFN-r are suggested to be involved in the pathogenesis. Being the early-differentiated EM CD8+ T cells with a potent capacity to proliferate, survive and generate multiple cytokines, IL-6R high IL-7Ra high EM CD8+ T cells may serve as a primary reservoir for effector CD8+ T cells which potently expand and produce cytokines upon immune stimulation. Duplicate experiments were performed for each condition. In each condition, we independently prepared total RNA using the RNeasy mini kit (Qiagen) and assessed RNA integrity using Bioanalyzer 2100 (Agilent)- RINs were close to 10 for all samples. RNA was then amplified and hybridized to the Illumina HumanHT-12 v4.0 BeadChip, according to Illumina standard protocols.
Project description:Ex vivo generated tolerogenic dendritic cells (tDCs) have a strong therapeutic potential to induce antigen-specific iTreg upon infusion in patients. We previously demonstrated that IL-10 tDC-primed T cells are very suppressive and produce IL-10. Here, we show that the majority of the IL-10+ T cells co-express IFNγ, giving rise to the question whether these cells are proinflammatory or regulatory. Whole genome gene expression analysis revealed a strong regulatory gene profile and a suppressed Th1 gene profile for the IL-10/ IFNγ co-expressing CD4+ T cells.