Project description:We report the application of miRNA next generation sequencing (NGS) for the analysis of impact of processing on miRNA in human breast milk, donated by 3 volunteers. MiRNA content of total and exosomal fraction was compared between unprocessed milk and sample subjected to either Holder (thermal) pasteurization (HoP) or elevated pressure processing (HPP). NGS reads were mapped to miRBase in order to obtain miRNA counts. Then, we analyzed differences in the miRNA abundance and function between raw and processed material. It was observed that both processing methods reduce number of miRNA reads and HoP is significantly more detrimental to miRNA than HPP.
Project description:untargeted metabolomics (RPLC, positive mode) on human milk samples to investigate the presence of maternal drugs and dietary factors in breast milk
Project description:untargeted metabolomics (RPLC, negative mode) on human milk samples to investigate the presence of maternal drugs and dietary factors in breast milk
Project description:Circulating small RNAs. including miRNAs but also isomiRs and other RNA species. have the potential to be used as non-invasive biomarkers for communicable and non-communicable diseases. This study aims to characterize miRNAs. isomiRs and small RNA clusters in biofluids. to compare their profiles. and to help in the establishment of standard guidelines. For this purpose. RNA from plasma and breast milk samples from 15 healthy postpartum mothers was extracted. Small RNA libraries were prepared with the NEBNext® small RNA library preparation kit and sequenced in an Illumina HiSeq2000 platform. After an initial quality control. miRNAs. isomiRs and clusters of small RNAs were annotated using seqBuster/seqCluster framework. The average amount of extracted RNA was 81 ng/mL [standard deviation (SD): 41] and 3985 ng/mL (SD: 3767) for plasma and breast milk. respectively. Mean number of good quality reads was 4.04 million (M) (40.01% of the reads) in plasma and 12.5M (89.6%) in breast milk. One thousand one hundred eighty two miRNAs. 74.317 isomiRs and 1.053 small RNA clusters that included piwi-interfering RNAs (piRNAs). tRNAs. small nucleolar RNAs (snoRNA) and small nuclear RNAs (snRNAs) were detected. Samples grouped by biofluid. with 308 miRNAs. 4.737 isomiRs and 778 small RNA clusters differentially detected. In summary. plasma and milk showed a completely different small RNA profile. In both. miRNAs. piRNAs. tRNAs. snRNAs. and snoRNAs were identified. confirming the presence of non-miRNA species in biofluids
Project description:Human milk is highly recommended for infant during the first six month of life by World Healthy Organisation (WHO). Human milk is not only rich in macro-nutritional components, but also rich in cells and molecules. MicroRNAs are small non-coding RNAs, which enriched in human milk. These molecules are vital in enormous biological and cellular functions including immune system and in response to infections. By using deep sequencing method, 770,374,554 raw reads were generated from all samples (n=26). Then, filter analysis was done to remove 81,091,772 (10.5%), and 689,282,782 clean reads (89.5%) were considered as clean reads, which was retained for the subsequent bioinformatics analysis. Annotation and matching reads to miRBase revealed1780 mature known microRNAs identified in human milk cells and lipids derived from healthy, cold and other infection types mothers. In particular, 1680 known microRNAs were determined in infected mothers (n=14), while 1,606 known microRNAs in healthy mothers (n=12). Of these known microRNAs, 453 microRNAs were differentially expressed (p<0.05) between healthy and infected samples. The majority of the highly expressed miRNAs in all samples, in particular top 20 microRNAs, were also differentially expressed between healthy and infections. Further, 592 novel mature microRNA sequences were predicted, with only 65,878 total reads. Amongst the total reads of the novel microRNAs, top 20 novel miRNAs were found to contributed in 73.3% (total reads 48,295) of the total reads (65,878).
Project description:Detection of breast cancer (BC) in young women is challenging because mammography, the most common tool for detecting BC, is not effective on the dense breast tissue characteristic of young women. In addition to the limited means for detecting their BC, young women face a transient increased risk of pregnancy-associated BC. As a consequence, reproductively active women could benefit significantly from a tool that provides them with accurate risk assessment and early detection of BC. One potential method for detection of BC is biochemical monitoring of proteins and other molecules in bodily fluids such as serum, nipple aspirate, ductal lavage, tear, urine, saliva and breast milk. Of all these fluids, only breast milk provides access to a large volume of breast tissue, in the form of exfoliated epithelial cells, and to the local breast environment, in the form of molecules in the milk. Thus, analysis of breast milk is a non-invasive method with significant potential for assessing BC risk. Here we analyzed human breast milk by mass spectrometry (MS)-based proteomics to build a biomarker signature for early detection of BC. Ten milk samples from 8 women provided 5 paired-groups (cancer versus control) for analysis of differentially expressed proteins: 2 within woman comparisons (milk from a diseased breast versus a healthy breast of the same woman) and 3 across women comparisons (milk from a woman with cancer versus a woman without cancer). Despite a wide range in the time between milk donation and cancer diagnosis (cancer diagnosis occurred from 1 month before to 24 months after milk donation), the levels of some proteins differed significantly between cancer and control in several of the 5 comparison groups. These pilot data are supportive of the idea that molecular analysis of breast milk will identify proteins informative for early detection and accurate assessment of BC risk, and warrant further research.
Project description:Breast milk is a complex liquid that enriched in immunological components and affect the development of the infant immune system. Exosomes, the membranous vesicles of endocytic origin, are ubiquitously in various body fluids which can mediate intercellular communication. MicroRNAs (miRNAs), a well-defined group of non-coding small RNAs, in human breast milk are packaged inside exosomes. Here, we present the identification of miRNAs in human breast milk exosomes using deep sequencing technology. We found that the immune-related miRNAs are enriched in breast milk exosomes, and are resistant to the general harsh conditions.