Project description:Circular RNAs are abundant, covalently closed transcripts that arise in cells through back-splicing and display distinct expression patterns across cells and developmental stages. While their functions are largely unknown, their intrinsic stability has made them valuable biomarkers in diseases like cancer. Here, we set out to examine circRNA patterns in amyotrophic lateral sclerosis (ALS). By RNA-sequencing analysis, we first identified circRNAs and linear RNAs that were differentially abundant in skeletal muscle biopsies from ALS and normal individuals. Among these, 8 circRNAs were significantly elevated and 10 significantly reduced in ALS, while the linear counterparts, arising from shared precursor RNAs, did not change. Several of these circRNAs were also differentially abundant in motor neurons derived from human induced pluripotent stem cells (iPSCs) bearing ALS mutations, and across different disease stages in skeletal muscle from a mouse model of ALS (SOD1G93A). Interestingly, several of the circRNAs significantly elevated in muscle were significantly reduced in the spinal cord from ALS patients and ALS (SOD1G93A) mice. In sum, we have identified differentially abundant circRNAs in ALS-relevant tissues (muscle and spinal cord) that could inform about neuromuscular molecular programs in ALS and guide the development of therapies.
Project description:Circular RNAs are abundant, covalently closed transcripts that arise in cells through back-splicing and display distinct expression patterns across cells and developmental stages. While their functions are largely unknown, their intrinsic stability has made them valuable biomarkers in diseases like cancer. Here, we set out to examine circRNA patterns in amyotrophic lateral sclerosis (ALS). By RNA-sequencing analysis, we first identified circRNAs and linear RNAs that were differentially abundant in skeletal muscle biopsies from ALS and normal individuals. Among these, 8 circRNAs were significantly elevated and 10 significantly reduced in ALS, while the linear counterparts, arising from shared precursor RNAs, did not change. Several of these circRNAs were also differentially abundant in motor neurons derived from human induced pluripotent stem cells (iPSCs) bearing ALS mutations, and across different disease stages in skeletal muscle from a mouse model of ALS (SOD1G93A). Interestingly, several of the circRNAs significantly elevated in muscle were significantly reduced in the spinal cord from ALS patients and ALS (SOD1G93A) mice. In sum, we have identified differentially abundant circRNAs in ALS-relevant tissues (muscle and spinal cord) that could inform about neuromuscular molecular programs in ALS and guide the development of therapies.
Project description:This SuperSeries is composed of the following subset Series: GSE39642: NanoString nCounter immune-related gene expression in blood sorted CD14+CD16- monocytes from sALS, fALS and HC subjects GSE39643: NanoString miRNA profiling of peripheral blood sorted CD14+CD16- monocytes from amyotrophic lateral sclerosis, multiple sclerosis and healthy control subjects Refer to individual Series
Project description:Identification of amyotrophic lateral sclerosis (ALS) associated genes. Post mortem spinal cord grey matter from sporadic and familial ALS patients compared with controls. Keywords: other
Project description:Identification of familial amyotrophic lateral sclerosis (fALS) related genes. Material from three hSOD1(G93A) transgenic mice was compared to material from three non-transgenic control mice using an alternating loop design on two-colour cDNA microarrays. Statistical data management and analysis: postgreSQL relational database (www.postgresql.org), Perl, and R (www.r-project.org); pin-wise lowess-regression based normalisation (Yang et al., 2002 [PMID: 11842121]); mixed ANOVA-model. Keywords = amyotrophic lateral sclerosis, ALS, SOD1 mouse model
Project description:We report the differential expression of small RNAs in muscle tissue of patients with Amyotrophic lateral sclerosis and healthy controls
Project description:Identification of familial amyotrophic lateral sclerosis (fALS) related genes. Material from three hSOD1(G93A) transgenic mice was compared to material from three non-transgenic control mice using an alternating loop design on two-colour cDNA microarrays. Statistical data management and analysis: postgreSQL relational database (www.postgresql.org), Perl, and R (www.r-project.org); pin-wise lowess-regression based normalisation (Yang et al., 2002 [PMID: 11842121]); mixed ANOVA-model. Keywords = amyotrophic lateral sclerosis, ALS, SOD1 mouse model Keywords: other