Project description:To further determine the origin of the increased virulence of Pseudomonas aeruginosa PA14 compared to Pseudomonas aeruginosa PAO1, we report a transcriptomic approach through RNA sequencing. Next-generation sequencing (NGS) has revolutioned sistems-based analsis of transcriptomic pathways. The goals of this study are to compare the transcriptomic profile of all 5263 orthologous genes of these nearly two strains of Pseudomonas aeruginosa.
2019-09-23 | GSE125646 | GEO
Project description:WGS data of four Pseudomonas aeruginosa strains
Project description:The aim of this experiment was to determine if the development of resistance to antibiotics can be driven by the concentration and speciation of Cu. Experimental setup was designed to investigate two hypotheses for which two strains of Gram- bacteria have been selected: - Do TE enhance AR in resistant bacteria? Resistant strain: Bioluminescent Pseudomonas aeruginosa PAO1 (Xen41, Tetracycline resistant) - Do TE induce AR in sensitive bacteria? Sensitive strain: Pseudomonas aeruginosa PAO1 (Wild Type)
Project description:The transcriptome of two different Pseudomonas aeruginosa mutant strains were compared to the Pseudomonas aeruginosa wild type strain in the stationary growth phase
Project description:The aim of this experiment was to determine if the development of resistance to antibiotics can be driven by the concentration and speciation of Cu. Experimental setup was designed to investigate two hypotheses for which two strains of Gram- bacteria have been selected: - Do TE enhance AR in resistant bacteria? Resistant strain: Bioluminescent Pseudomonas aeruginosa PAO1 (Xen41, Tetracycline resistant) - Do TE induce AR in sensitive bacteria? Sensitive strain: Pseudomonas aeruginosa PAO1 (Wild Type)
Project description:Determination of the binding sites of 55 transcription factors (all response regulators) in Pseudomonas aeruginosa strains PAO1, PA14 and IHMA87.
Project description:Pseudomonas aeruginosa (P. aeruginosa) lung infection is a significant cause of mortality in patients with cystic fibrosis (CF). Most CF patients acquire unique P. aeruginosa strains from the environment; however clonal strains have been identified in CF communities in several countries. Two clonal strains infect 10% to 40% of patients in three CF clinics in mainland eastern Australia. The expression profiles of four planktonically-grown isolates of one Australian clonal strain (AES-2), and four non–clonal CF P. aeruginosa isolates were compared to each other and to the reference strain PAO1 using the Affymetrix P. aeruginosa PAO1 genome array, to gain insight into properties mediating the enhanced infectivity of AES-1. The isolates were subsequently grown as 3-day old biofilms and similarly extracted for RNA and compared as above. Data analysis was carried out using BIOCONDUCTOR software. Keywords: Comparative strain hybridization
Project description:Pseudomonas aeruginosa (P. aeruginosa) lung infection is a significant cause of mortality in patients with cystic fibrosis (CF). Most CF patients acquire unique P. aeruginosa strains from the environment; however clonal strains have been identified in CF communities in several countries. Two clonal strains infect 10% to 40% of patients in three CF clinics in mainland eastern Australia. The expression profiles of four planktonically-grown isolates of one Australian clonal strain (AES-1), and four non–clonal CF P. aeruginosa isolates were compared to each other and to the reference strain PAO1 using the Affymetrix P. aeruginosa PAO1 genome array, to gain insight into properties mediating the enhanced infectivity of AES-1. The isolates were subsequently grown as 3-day old biofilms and similarly extracted for RNA and compared as above. Data analysis was carried out using BIOCONDUCTOR software. Keywords: Comparative strain hybridization
Project description:To gain insights into the mechanisms by which RC301 compensates for the deficiency in the NPR-1 controlled immune and behavioral responses of strain DA650, we determine the whole-genome expression profile of these two strains upon exposure to Pseudomonas aeruginosa strain PA14