Project description:Ulcerative colitis and Crohn’s disease are chronic inflammatory intestinal diseases with perplexing heterogeneity in manifestations and response to treatment. While the molecular basis for this heterogeneity remains uncharacterized, single-cell technologies allow us to explore the transcriptional states within tissues at an unprecedented resolution which could further understanding of these complex diseases. Here, we apply single-cell RNA-sequencing to human inflamed intestine and show that the largest differences among patients are present within the myeloid compartment including macrophages and neutrophils. Using spatial transcriptomics in human tissue at single-cell resolution (CosMx Spatial Molecular Imaging) we spatially localized each of the macrophage and neutrophil subsets identified by single-cell RNA-sequencing and unravel further macrophage diversity based on their tissue localization. Finally, single-cell RNA-sequencing combined with single-cell spatial analysis reveals a strong communication network involving macrophages and inflammatory fibroblasts. Our data sheds light on the cellular complexity of these diseases and points towards the myeloid and stromal compartments as important cellular subsets for understanding patient-to-patient heterogeneity.
Project description:Single-cell RNAseq (scRNAseq) and paired VDJ analysis and spatial transcriptomics, we create the first comprehensive cell atlas of the healthy developing, paediatric and adult human gut, including 347,980 cells from up to 10 distinct anatomical sites. We use this data to trace the cellular composition of the gut throughout life, define novel cell markers and cell-cell interactions. We find four neuronal cell populations in the developing enteric nervous system, with expression patterns indicative of irritable bowel syndrome and Hirschsprung’s disease, and identify key cell players and communication networks initiating lymphoid structure formation in early human development.
Project description:Induced pluripotent stem cell (iPSC)-derived dopamine neurons provide an opportunity to model Parkinson’s disease (PD) but neuronal cultures are confounded by cellular heterogeneity. By applying high-resolution single cell transcriptomic analyses to Parkinson’s iPSC-derived dopamine neurons carrying the GBA-N370S risk variant, we exploited intra-culture cellular heterogeneity to identify a progressive axis of gene expression variation leading to endoplasmic reticulum stress. Analysis of genes differentially-expressed (DE) along this axis identified the transcriptional repressor histone deacetylase 4 (HDAC4) as an upstream regulator of disease progression. HDAC4 was mislocalized to the nucleus in PD iPSC-derived dopamine neurons and repressed genes early in the disease axis, leading to late deficits in protein homeostasis. Treatment of iPSC-derived dopamine neurons with compounds known to modulate HDAC4 activity upregulated genes early in the DE axis, and corrected Parkinson’s-related cellular phenotypes. Our study demonstrates how single cell transcriptomics can exploit cellular heterogeneity to reveal disease mechanisms and identify therapeutic targets.