Project description:Visium Spatial Gene Expression by the 10X genomics protocol was performed on 2 sections of human DRG tissue to elucidate the spatial transcriptomic organization.
Project description:Changes in microRNA (miRNA) expression in the mouse L4 and L5 dorsal root ganglion following unilateral sciatic nerve transection. The timepoint of 7 days post-axotomy was chosen to capture miRNA expression profiles at a time when the injured neurons were beginning to regenerate. Two condition experiment, paired control DRG vs axotomised DRG following unilateral sciatic nerve transection. 3 biological replicates, one replicate per array. Dye swap in Replicate 2.
Project description:We generated whole-genome gene expression profiles of dorsal root ganglion (DRG) neurons following nerve damage. DRG neurons extend one peripheral axon into the spinal nerve and one central axon into the dorsal root. The peripheral axon regenerates vigorously, while in contrast the central axon has little regenerative capacity. For this study, two groups of animals were subjected either to sciatic nerve (SN) or dorsal root (DR) crush, and at 12, 24, 72 hours and 7 days after the crush, lumbar DRGs L4, L5 and L6 were dissected and total RNA was extracted. For each time point after lesion, three biological replicate RNA samples were hybridized together with the common reference sample consisting of labeld RNA pooled from three unlesioned animals.
Project description:We generated whole-genome gene expression profiles of dorsal root ganglion (DRG) neurons following nerve damage. DRG neurons extend one peripheral axon into the spinal nerve and one central axon into the dorsal root. The peripheral axon regenerates vigorously, while in contrast the central axon has little regenerative capacity. For this study, two groups of animals were subjected either to sciatic nerve (SN) or dorsal root (DR) crush, and at 12, 24, 72 hours and 7 days after the crush, lumbar DRGs L4, L5 and L6 were dissected and total RNA was extracted.
Project description:Dorsal root ganglion (DRG) neurons provide connectivity between peripheral tissues and spinal cord. Transcriptional plasticity within DRG sensory neurons after peripheral nerve injury contributes to nerve repair but also leads to maladaptive plasticity, including the development of neuropathic pain. This study presents tissue and neuron specific expression profiling of both known and novel Long Non-Coding RNAs (LncRNAs) in rodent DRG following nerve injury. We have identified a large number of novel LncRNAs expressed within rodent DRG, a minority of which were syntenically conserved between mouse and rat and which including both- intergenic and antisense LncRNAs. We have also identified neuron type-specific LncRNAs in mouse DRG, and LncRNAs that are expressed in human IPS cell-derived sensory neurons. We show significant plasticity in LncRNA expression following nerve injury, which in mouse is strain dependant. This resource is publicly available and will aid future studies of DRG neuron identity and the transcriptional landscape in both naïve and injured DRG.
Project description:Schwann cells are important glial cells in peripheral nervous system. In this study, we performed single cell RNA-sequencing (scRNA-seq) analysis of Schwann cells exist in both dorsal root ganglion(DRG) and sciatic nerve.We categorized DRG and sciatic nerve Schwann cells into different subtypes,and found common subtypes and different subtypes.In addition, we discovered the proliferation and migration ability of Schwann cells were distinct in different tissues.Our current study revealed the distinctive characteristics of Schwann cells in DRG and sciatic nerve.
Project description:Painful diabetic peripheral neuropathy (PDPN) is a common complication of diabetes mellitus (DM). As one of the most disturbing symptoms, mechanical allodynia (MA) in PDPN remains largely unexplored. This dataset contains single-cell RNA sequencing results from rat dorsal root ganglion (DRG). The goal of this experiment was to investigate the transcriptional changes of distinct cell types in the DRG along MA development.