Project description:The goal of these experiments were to test the on-target and target-adjacent editing efficiencies of different single-nucleobase editing systems. Previous studies have shown that tethering DNA mutating enzymes to Cas9-nickase-UGI complexes results in editing of chromosomal DNA. However, these editing events encompass undesirable target-adjacent nucleobase edits. Here, we characterize a novel approach that reduces the frequency of target-adjacent editing while maintaining a high level of on-target editing.
Project description:Because of their smallness, the recently developed CRISPR-Cas12f nucleases can be effectively packaged into adeno-associated viruses for gene therapy. However, a systematic evaluation of the editing outcomes of CRISPR-Cas12f is lacking. In this study, we apply a high-throughput sequencing method to comprehensively assess the editing efficiency, specificity, and safety of four Cas12f proteins in parallel with that of Cas9 and two Cas12a proteins at multiple genomic sites. Cas12f nucleases achieve robust cleavage at most of the tested sites and mainly produce deletional fragments. In contrast, Cas9 and Cas12a show relatively higher editing efficiency at the vast majority of the tested sites. However, the off-target hotspots identified in the Cas9- and Cas12a-edited cells are negligibly detected in the Cas12f-edited cells. Moreover, compared to Cas9 and Cas12a nucleases, Cas12f nucleases reduce the levels of chromosomal translocations, large deletions, and integrated vectors by 2- to 3-fold. Therefore, our findings confirm the editing capacity of Cas12f and reveal the ability of this nuclease family to preserve genome integrity during genome editing.
Project description:we characterized a novel compact Cas12a ortholog, EbCas12a, from the Erysipelotrichia bacterium with activities in mammalian cells. It is with the PAM sequence of 5’-TTTV-3’ (V=A, G, C) and the smallest size of ~3.47kb among reported Cas12a orthologs so far. Moreover, enhanced EbCas12a (enEbCas12a) was also developed to have comparable editing efficiency with higher specificity to AsCas12a and LbCas12a in mammalian cells. With the help of the compact enEbCas12a, all-in-one AAV delivery system with crRNA for Cas12a was developed for both in vitro and in vivo. Altogether, with the help of the novel smallest high fidelity enEbCas12a, this first case of the all-in-one AAV delivery for Cas12a could greatly boost future gene therapy and scientific research.
Project description:Systematic mapping of genetic interactions and interrogation of the functions of sizeable genomic segments in mammalian cells represent important goals of biomedical research. To advance these goals, we present a CRISPR-based screening system for combinatorial genetic manipulation that employs co-expression of Cas9 and Cas12a nucleases and machine learning-optimized libraries of hybrid Cas9-Cas12a guide RNAs. This system, named CHyMErA (Cas Hybrid for Multiplexed Editing and Screening Applications), outperforms genetic screens using Cas9 or Cas12a editing alone. Application of CHyMErA to the ablation of mammalian paralog gene pairs reveals extensive genetic interactions and uncovers phenotypes normally masked by functional redundancy. Application of CHyMErA in a chemo-genetic interaction screen identifies genes that impact cell growth in response to mTOR pathway inhibition. Moreover, by systematically targeting thousands of alternative splicing events, CHyMErA identifies exons underlying human cell line fitness. CHyMErA thus represents an effective screening approach for genetic interaction mapping and the functional analysis of sizeable genomic regions, such as alternative exons.
Project description:Systematic mapping of genetic interactions and interrogation of the functions of sizeable genomic segments in mammalian cells represent important goals of biomedical research. To advance these goals, we present a CRISPR-based screening system for combinatorial genetic manipulation that employs co-expression of Cas9 and Cas12a nucleases and machine learning-optimized libraries of hybrid Cas9-Cas12a guide RNAs. This system, named CHyMErA (Cas Hybrid for Multiplexed Editing and Screening Applications), outperforms genetic screens using Cas9 or Cas12a editing alone. Application of CHyMErA to the ablation of mammalian paralog gene pairs reveals extensive genetic interactions and uncovers phenotypes normally masked by functional redundancy. Application of CHyMErA in a chemo-genetic interaction screen identifies genes that impact cell growth in response to mTOR pathway inhibition. Moreover, by systematically targeting thousands of alternative splicing events, CHyMErA identifies exons underlying human cell line fitness. CHyMErA thus represents an effective screening approach for genetic interaction mapping and the functional analysis of sizeable genomic regions, such as alternative exons.
2020-01-28 | GSE144281 | GEO
Project description:Novel Cas12a Orthologs for Highly Efficient Genome Editing in Plants
Project description:CRISPR-Cas9 delivery by AAV holds promise for gene therapy but faces critical barriers due to its potential immunogenicity and limited payload capacity. Here, we demonstrate genome engineering in postnatal mice using AAV-split-Cas9, a multi-functional platform customizable for genome-editing, transcriptional regulation, and other previously impracticable AAV-CRISPR-Cas9 applications. We identify crucial parameters that impact efficacy and clinical translation of our platform, including viral biodistribution, editing efficiencies in various organs, antigenicity, immunological reactions, and physiological outcomes. These results reveal that AAV-CRISPR-Cas9 evokes host responses with distinct cellular and molecular signatures, but unlike alternative delivery methods, does not induce detectable cellular damage in vivo. Our study provides a foundation for developing effective genome therapeutics mRNA-Seq from muscles (9 samples; 3 mice x 3 conditions) and lymph nodes (9 samples; 3 mice x 3 conditions).
Project description:The advent of base editors (BEs) holds a promising potential in correcting pathogenic-related point mutations to treat relevant diseases. Unexpectedly, Cas9 nickase (nCas9) derived BEs lead to DNA double-strand breaks, which can trigger unwanted cellular responses including a p53-mediated DNA damage response (DDR). Here, we showed that catalytically-dead-Cas12a (dCas12a) conjugated BEs induced no DNA break and minimally activated DDR proteins including H2AX, ATM, ATR and p53. We further developed a BEACON (Base Editing induced by human APOBEC3A and Cas12a without DNA break) system that fuses dCas12a to the engineered APOBEC3A with enhanced deamination efficiency and editing specificity. By using BEACON, efficient C-to-T editing was achieved at levels comparable to AncBE4max and only low levels of DDR and RNA off-target (OT) effects were triggered in mammalian cells. BEACON also induced in vivo base editing in mouse embryos and targeted C-to-T conversions were detected in F0 mice.
Project description:The advent of base editors (BEs) holds a promising potential in correcting pathogenic-related point mutations to treat relevant diseases. Unexpectedly, Cas9 nickase (nCas9) derived BEs lead to DNA double-strand breaks, which can trigger unwanted cellular responses including a p53-mediated DNA damage response (DDR). Here, we showed that catalytically-dead-Cas12a (dCas12a) conjugated BEs induced no DNA break and minimally activated DDR proteins including H2AX, ATM, ATR and p53. We further developed a BEACON (Base Editing induced by human APOBEC3A and Cas12a without DNA break) system that fuses dCas12a to the engineered APOBEC3A with enhanced deamination efficiency and editing specificity. By using BEACON, efficient C-to-T editing was achieved at levels comparable to AncBE4max and only low levels of DDR and RNA off-target (OT) effects were triggered in mammalian cells. BEACON also induced in vivo base editing in mouse embryos and targeted C-to-T conversions were detected in F0 mice.
Project description:Compact and versatile CRISPR-Cas systems will enable genome engineering applications through high-efficiency delivery in a wide variety of contexts. Here we create an efficient miniature Cas system (CasMINI) engineered from the type V-F Cas12f (Cas14) system by guide RNA and protein engineering, which is less than half the size of currently used CRISPR systems (Cas9 or Cas12a). We demonstrate that CasMINI can drive high levels of gene activation (up to thousands-fold increases), while the natural Cas12f system fails to function in mammalian cells. We show that the CasMINI system has comparable activities to Cas12a for gene activation, is highly specific, and allows for robust base editing and gene editing. We expect that CasMINI can be broadly useful for cell engineering and gene therapy applications ex vivo and in vivo.