Project description:Genome-wide chromatin state maps of murine embryonic stem (ES) cells, ES-derived neural progenitor cells and whole brain tissue. The data were generated to examine the correlation between histone and DNA methylation during lineage-commitment. Keywords: High-throughput ChIP-sequencing, Illumina, cell type comparison H3K4me3, H3K4me2 and/or H3K4me1 ChIP-Seq in singlicate from mouse embryonic stem (ES) cells, ES-derived neural progenitor cells and whole brain tissue suspensions Raw sequence data files for this study are available for download from the SRA FTP site at ftp://ftp.ncbi.nlm.nih.gov/sra/Studies/SRP000/SRP000230
Project description:Embryonic stem (ES) cells and embryos reversibly pause via chemical mTOR inhibition. In this study, we investigate the tissue-specific response to mTORi-induced pausing in ES and trophoblast stem (TS) cells. To resolve the sequential rewiring of the proteome, we conducted a time-series proteomics experiment at 1, 3, 6, 12, 24, and 48 hours upon induction of pausing, and at 1, 3, 6, 12, 24, and 48 hours upon release of pausing in ES and TS cells. We find that ES, but not TS cells pause reversibly. To optimise developmental pausing conditions, we reasoned that by understanding the difference in pausing response of ES and TS cells, we could identify which pathways are essential for pausing. We found that KEGG pathways related to amino acid degradation, fatty acid degradation, and DNA repair are upregulated in ES cells, but downregulated in TS cells during entry into pausing. Moreover, by targeted metabolomics, we found a depletion of short chain carnitines in the paused ES cells. To extend the length of developmental pausing, we supplemented paused embryos with L-carnitine. The L-carnitine supplementation facilitates lipid usage and prolongs the pausing length by 19 days through the establishment of a more dormant state.
Project description:In order to identify the effects of the knock-down of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the knock-down cell line. Transcriptome analysis of the knock-down transgenic mouse ES cell line. The knock-down cell line (shE13) was generated by stably expressing a specific short-hairpin RNA against E13 sequence thus knocking-down E13 expression in parental mouse ES cell line E14Tg2a.4 (E14, Hooper M et al., 1987). The specific mouse gene knocked down in the ES cell line is E130012A19Rik.
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.