Project description:Bald thigh syndrome is a common hair loss disorder in sighthounds. The overall goal of our study was to identify the cause of bald thigh syndrome and the pathological changes associated with it. We approached this aim by comparing skin biopsies and hair shafts of affected and control dogs microscopically as well as by applying high-throughput technologies such as genomics, transcriptomics and proteomics. While the histology is rather unspecific in most cases, trichogram analysis and scanning electron microscopy revealed severe structural abnormalities in hair shafts of affected dogs. This finding is supported by the results of the transcriptomic and proteomic profiling of skin biopsies and hair shafts, respectively, where genes and proteins important for differentiation of the inner root sheath and the assembly of a proper hair shaft were downregulated. Transcriptome profiling of skin biopsies revealed a downregulation of genes encoding 23 hair shaft keratins and 51 keratin associated proteins, as well as desmosomal cadherins and several actors of the BMP signaling pathway, which is important for hair shaft differentiation. To identify differentially expressed proteins in structural abnormal hair shafts, we performed nLC-MS/MS- based proteomic analysis of fractured hair shafts of four dogs with bald thigh syndrome (Greyhounds, n=3, Whippet, n=1) and intact telogen hair shafts of four control dogs (Greyhounds, n=3, Whippet= n=1) plucked on the thighs. Decreased expression of keratin 71 and desmocollin 2 on the mRNA level in skin biopsies corresponded with a reduced protein expression in the hair shafts of affected dogs.
Project description:In a transcriptome study of psoriatic (PP) vs. normal (NN) skin, we found a co-expressed gene module (N5) enriched 11.5-fold for lipid biosynthetic genes. We also observed fewer visible hairs in PP skin, compared to uninvolved (PN) or NN skin (p<0.0001). To ask whether these findings might be due to abnormalities of the pilosebaceous unit, we carried out 3D morphometric analysis of paired PP and PN biopsies. Sebaceous glands (SG) were markedly atrophic in PP vs. PN skin (91% average reduction in volume, p=0.031). Module N5 genes were strongly downregulated in PP vs. NN skin (fold-change [FC] < 0.25, 44.4-fold), and strongly up-regulated in sebaceous hyperplasia (SH, FC > 4, 54.1-fold). The intersection of PP-downregulated and SH-upregulated gene lists generated a gene expression signature consisting solely of module N5 genes, whose expression in PP vs. NN skin was inversely correlated with the signature of IL17-stimuated keratinocytes. Despite loss of visible hairs, morphometry identified elongated follicles in PP vs. PN skin (average 1.7 vs. 1.2 Jm, p=0.020). These results document SG atrophy in non-scalp psoriasis, identify a cytokine-regulated set of SG signature genes, and suggest that loss of visible hair in PP skin may result from abnormal SG function.
Project description:In the present study transcriptomic profiling of skin biopsies containing secondary hair follicles were utilized to identify key genes and signaling pathways involved in hair follicle transition from no-growth phase (telogen) to growth phase (anagen).
Project description:EGFR/MEK inhibitor therapy induces a distinct inflammatory hair follicle response that includes a collapse of hair follicle immune privilege and differential modulation of IL-33 and IL-37 expression. Our findings suggest that successful future management of EGFRi/MEKi-induced folliculitis requires restoration of hair follicle immune privilege. In this RNAseq parietal scalp (rather than truncal skin) biopsies were taken from long-term (3-9 months) EGFRi-treated patients exhibiting folliculitis (Chronic-EGFRi) or from patients prior to commencing and after two weeks of EGFRi therapy (Acute-EGFRi), compared to normal scalp skin.
Project description:In a transcriptome study of psoriatic (PP) vs. normal (NN) skin, we found a co-expressed gene module (N5) enriched 11.5-fold for lipid biosynthetic genes. We also observed fewer visible hairs in PP skin, compared to uninvolved (PN) or NN skin (p<0.0001). To ask whether these findings might be due to abnormalities of the pilosebaceous unit, we carried out 3D morphometric analysis of paired PP and PN biopsies. Sebaceous glands (SG) were markedly atrophic in PP vs. PN skin (91% average reduction in volume, p=0.031). Module N5 genes were strongly downregulated in PP vs. NN skin (fold-change [FC] < 0.25, 44.4-fold), and strongly up-regulated in sebaceous hyperplasia (SH, FC > 4, 54.1-fold). The intersection of PP-downregulated and SH-upregulated gene lists generated a gene expression signature consisting solely of module N5 genes, whose expression in PP vs. NN skin was inversely correlated with the signature of IL17-stimuated keratinocytes. Despite loss of visible hairs, morphometry identified elongated follicles in PP vs. PN skin (average 1.7 vs. 1.2 Jm, p=0.020). These results document SG atrophy in non-scalp psoriasis, identify a cytokine-regulated set of SG signature genes, and suggest that loss of visible hair in PP skin may result from abnormal SG function. Gene expression was compared between sebaceous hyperplasia lesions (n = 5) and normal skin (n = 3) from control subjects.
Project description:We established a culture method of human keratinocytes from the bulge region of a plucked hair follicle, that contains multipotent epithelial stem cells with high proliferative potential. Using our method, keratinocyte cultures were successfully obtained from all subjects without invasive skin biopsies. We compared the gene expression profiles between the cultured keratinocytes derived from human hair-follicle-bulge (bulgeM-bM-^@M-^Sderived keratinocytes; BDKs) and neonatal human epidermal keratinocytes (NHEKs), and between BDKs from donors with atopic dermatitis and non-atopic controls using microarray analysis. Keywords: expressin profiling Two cell cultures, BDK vs. NHEK cells. 18 BDKs; derived from eighteen healthy volunteers , 6 NHEKs; purchased from Kurabo (Osaka, Japan). One replicate per array.
Project description:Alopecia areata (AA) is a prevalent disease associated with major emotional distress, and lacks effective, safe therapeutics for patients with extensive hair loss. This is the first report of hair regrowth with specific cytokine antagonism, in three patients with extensive hair loss ranging from 40% scalp involvement to alopecia universalis. Ustekinumab, an IL-12/23p40 antagonist that is highly effective in psoriasis, showed impressive ability to induce hair regrowth, coupled with suppression of inflammatory pathways and upregulation of hair keratins. Our report suggests that extensive AA is reversible using targeted treatments, opening the door for specific cytokine antagonism for this debilitating disease. We evaluated hair regrowth in three AA patients at 20 weeks after treatment with 3 subcutaneous doses of 90mg ustekinumab given at weeks 0, 4, and 16. Skin biopsies of lesional and non-lesional scalp (when available) were taken at baseline (week 0) and at week 20. We also obtained biopsies from three healthy individuals.
Project description:The purpose of this study was to compare the gene expression profile of recurent exercise rhabdomyolysis vs control muscles in French Trotter to determine any metabolic or structural disorder. Transcriptome analysis revealed 191 genes significantly modulated in rhabdomyolysis vs control muscles (p<0.05). Many genes involved in the fatty acid oxidation, the TCA cycle and the mitochondrial respiratory chain were severely down-regulated. The muscle fibers were under hypoxia and oxidative stress conditions which stimulated glycolysis. The muscle fiber calcium homeostasis was greatly affected towards an increase of cytoplasmic calcium and a depletion of the sarcoplasmic reticulum calcium. Gene expression analysis revealed an alteration of the aerobic ATP synthesis with a severe mitochondrial dysfunction which could explain the disruption of the cytoplasmic calcium regulation and a muscular relaxation disorder. Total RNA was extracted from the gluteal medius and longissimus lumborum muscles after biopsies in 15 French Trotter horses including 10 controls and 5 RER horses affected by rhabdomyolysis with high plasmatic muscular enzyme activities. Gene expression analysis was performed on the muscle biopsies using a 25K oligonucleotide microarray.
Project description:Myofibrillar myopathy (MFM) in horses is a late onset disease that affects performance and athleticism. It is characterized by myofibrillar disarray and protein aggregation with no known cause. The objective of this study was to elucidate the molecular drivers of MFM in Warmblood (WB) horses by proteomic profiling (5 MFM WB, 4 non-MFM WB) of gluteal muscle. MFM horses used in this study had a chronic history of poor performance and exercise intolerance as well as accumulation of desmin aggregates in > 4 myofibers per muscle sample. The Equine Neuromuscular Diagnostic Laboratory database at Michigan State University was queried to identify WB horses with snap frozen gluteus medius biopsies available for analysis. Non-MFM control horses were defined as horses with no history of exercise intolerance and no evidence of desmin accumulation or other histopathology in muscle biopsies. Muscle biopsy samples were obtained at rest from horses that had not undertaken strenuous exercise in the preceding 48 hours.
Project description:Lichen planopilaris (LPP) is a chronic inflammatory disease of unknown pathogenesis that leads to permanent hair loss. Whilst destruction of epithelial hair follicle stem cells (eHFSCs) that reside in an immunologically protected niche of the HF epithelium, the bulge, is a likely key event in LPP pathogenesis, this remains to be demonstrated. Laser capture microdissection of bulge cells from biopsies of lesional and non-lesional scalp skin from adult LPP patients were analyzed by microarray analysis.