Project description:A striking property of the ancient and obligate mutualism between figs and their pollinating wasps is that fig wasps consistently oviposit in the inner flowers of the fig syconium (gall flowers, which develop into galls that house developing larvae), but typically do not use the outer ring of flowers (seed flowers, which develop into seeds). To better understand differences between gall and seed flowers that might influence oviposition choices, and the unknown mechanisms underlying gall formation, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, which posits that only a portion of fig flowers are physiologically capable of responding to gall induction or supporting larval development, we found significant differences in gene expression assigned to defense and metabolism between gall- and seed flowers in receptive syconia. Transcripts assigned to flavonoids and defense were especially prevalent in receptive gall flowers, and carbohydrate metabolism was significantly up-regulated relative to seed flowers. In turn, high expression of the venom gene icarapin during wasp embryogenesis within galled flowers distinguishes it as a candidate gene for gall initiation. In response to galling, the fig significantly up-regulates the expression of chalcone synthase, which previously has been connected to gall formation in other plants. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides evidence for a stability mechanism in the ancient fig-fig wasp association.
Project description:A striking property of the ancient and obligate mutualism between figs and their pollinating wasps is that fig wasps consistently oviposit in the inner flowers of the fig syconium (gall flowers, which develop into galls that house developing larvae), but typically do not use the outer ring of flowers (seed flowers, which develop into seeds). To better understand differences between gall and seed flowers that might influence oviposition choices, and the unknown mechanisms underlying gall formation, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, which posits that only a portion of fig flowers are physiologically capable of responding to gall induction or supporting larval development, we found significant differences in gene expression assigned to defense and metabolism between gall- and seed flowers in receptive syconia. Transcripts assigned to flavonoids and defense were especially prevalent in receptive gall flowers, and carbohydrate metabolism was significantly up-regulated relative to seed flowers. In turn, high expression of the venom gene icarapin during wasp embryogenesis within galled flowers distinguishes it as a candidate gene for gall initiation. In response to galling, the fig significantly up-regulates the expression of chalcone synthase, which previously has been connected to gall formation in other plants. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides evidence for a stability mechanism in the ancient fig-fig wasp association. We examined two different Ficus flower types at two different time points. Each sample contained a pool of hundreds of individual flowers from multiple sycomia.
Project description:We performed shallow whole genome sequencing (WGS) on circulating free (cf)DNA extracted from plasma or cerebrospinal fluid (CSF), and shallow WGS on the tissue DNA extracted from the biopsy in order to evaluate the correlation between the two biomaterials. After library construction and sequencing (Hiseq3000 or Ion Proton), copy number variations were called with WisecondorX.
Project description:Whole genome sequencing (WGS) of tongue cancer samples and cell line was performed to identify the fusion gene translocation breakpoint. WGS raw data was aligned to human reference genome (GRCh38.p12) using BWA-MEM (v0.7.17). The BAM files generated were further analysed using SvABA (v1.1.3) tool to identify translocation breakpoints. The translocation breakpoints were annotated using custom scripts, using the reference GENCODE GTF (v30). The fusion breakpoints identified in the SvABA analysis were additionally confirmed using MANTA tool (v1.6.0).