Project description:The ovarian reserve of follicles comprises all oocytes for lifetime fertility and once formed, it is non renewing. The orphan nuclear receptor steroidogenic factor 1 (SF-1; Nr5a1) is essential for steroidogenesis, but its role in the earliest stages of follicular development is not known. We therefore developed a model of conditional depletion of SF-1 from prenatal ovaries and performed RNAsequencing to identify SF-1 regulated genes.
Project description:During female reproductive life, the reserve of ovarian follicles is reduced by maturation and atresia until menopause ensues. Foxo3 is required to maintain the ovarian reserve in mice. We asked if overexpression of a constitutively active FOXO3 protein can increase long-lasting ovarian reproductive capacity in mice. Trangenic vs non-transgenic mice onto Foxo3+/- vs Foxo3-/- genotype
Project description:During female reproductive life, the reserve of ovarian follicles is reduced by maturation and atresia until menopause ensues. Foxo3 is required to maintain the ovarian reserve in mice. We asked if overexpression of a constitutively active FOXO3 protein can increase long-lasting ovarian reproductive capacity in mice.
Project description:Although it is well established that the ovarian reserve diminishes with increasing age, and that a woman’s age is correlated to lower oocyte quality, the interplay of a diminished reserve and age on oocyte developmental competence is not clear. After maturation, oocytes are mostly transcriptionally quiescent, and developmental competence prior to embryonic genome activation (EGA) relies on maternal RNA and proteins. Age and ovarian reserve both affects oocyte developmental competence, however, their relative importance in this process are difficult to tease out, as ageing is accompanied by a decrease in ovarian reserve. Oocytes store large quantities of RNA, including several noncoding transcripts (ncRNAs) involved in early development transcription and translation modulation. Despite the central role of ncRNAs in maternal to zygote transition, no characterization of the ncRNA transcriptome in human oocytes has been reported. This study aims at identifying how the human oocyte transcriptome changes across reproductive ages and ovarian reserve levels, with the goal of identifying candidate markers of developmental competence, and to assess the independent relevance of age and ovarian reserve in the changes of the transcriptome
Project description:The ovarian reserve defines the female reproductive lifespan, which in humans spans decades due to robust maintenance of meiotic arrest in oocytes residing in primordial follicles. Epigenetic reprogramming, including DNA demethylation, accompanies meiotic entry, but the chromatin changes that underpin the generation and preservation of ovarian reserves are poorly defined. We report that the Polycomb Repressive Complex 1 (PRC1) establishes repressive chromatin states in perinatal mouse oocytes that directly suppress the gene expression program of meiotic prophase-I and thereby enable the transition to dictyate arrest. PRC1 dysfuction causes depletion of the ovarian reserve and leads to premature ovarian failure. Our study demonstrates a fundamental role for PRC1-mediated gene silencing in female reproductive lifespan, and reveals a critical window of epigenetic programming required to establish ovarian reserve.
Project description:Limited research has explored the associations between microRNAs (miRNA) and diminished ovarian reserve (DOR). The study aimed to identify differentially expressed miRNAs in follicular fluid exosomes from women with DOR compared to normal ovarian reserve (NOR) and investigate their role in the proliferation and apoptosis of the human ovarian granulosa tumor cell line KGN.
Project description:To investigate the pathogenesis of diminished ovarian reserve, differentially expressed miRNAs in serum were constructed through miRCURYTM LNA expression Array.
Project description:To investigate the pathogenesis of diminished ovarian reserve, differentially expressed miRNAs in granulosa cells were constructed through miRCURYTM LNA expression Array.
Project description:This group consist of human embryologists from the reproductive medical center for of the 1st affiliated hospital of Anhui Medical University. Our research is specifically focused on women ovarian reserve and the relevant female infertility. By deep sequencing, the current experiment determined the small non-coding RNA profile of cumulus cells from patients with or without diminished ovarian reserve undergoing controlled ovarian stimulation and in vitro fertilization treatment. Ovarian follicles, which are a densely-packed shell of granulosa cells that contains an immature or mature oocyte, are above all responsible for the development, maturation, and release of mature egg for fertilization. They are also responsible for synthesizing and secreting hormones that are essential for follicular development, menstrual and estrous cycle, maintenance of the reproductive tracts and their functions, development of female secondary sex characteristics, and metabolism. During folliculogenesis, ovarian granulosa cells surrounding the oocyte differentiate into mural granulosa cells, involved in gonadal steroidogenesis, and into cumulus cells, which are ovulated with the oocyte at ovulation. In the present study, we described the small non-coding RNA expression profile to characterize the ensemble of both known and novel ncRNAs expressed in cumulus cells from patients with or without Diminished ovarian reserve, by using high-throughput Solexa technology.