Project description:To evaluate the roles of gene regulation in Oryza sativa leaf, dynamic profiles of transcriptome were investigated in Oryza sativa L. spp. indica with different treatments, the aerial tissues of one-month-old plants from four different areas (groups 1–4) were treated with 0, 40 mL of 25% azoxystrobin, 0.01 g of VdAL, or 40 mL of 25% azoxystrobin plus 0.01 g VdAL, respectively.
Project description:Rice is a critically important food source but yields worldwide are vulnerable to periods of drought. We exposed eight genotypes of upland and lowland rice (Oryza sativa L. ssp. japonica and indica) to drought stress at the late vegetative stage and harvested leaves for protein extraction and subsequent label-free shotgun proteomics. Gene ontology analysis revealed some differentially expressed proteins were induced by drought in all eight genotypes; we speculate that these play a universal role in drought tolerance. However, some highly genotype-specific patterns of response to drought suggest that some mechanisms of metabolic reprogramming are not universal. Such proteins had largely uncharacterized functions, making them biomarker candidates for drought tolerance screens.
Project description:Examination of 3 tissue types in Oryza glabberima (accession CG14) by high throughput sequencing for small RNA discovery and expression profiling
Project description:Comparative transcriptome sequencing in leaf and root tissues of Control and Salt-treated Oryza sativa generated 52.2 and 17.29 million high-quality reads.
Project description:By the combination of affinity enrichment and high-resolution LC-MS/MS analysis, large-scale lysine acetylome analysis was performed in oryza sativa. Altogether, 1,003 lysine acetylation sites in 692 proteins were identified.
Project description:In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana, ecotype Columbia-0) to a crop, rice (Oryza sativa spp. japonica (Nipponbare)), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants.
Project description:How heterochromatin genes evolve as ‘gene islands’ to fit into the repressive chromatin environment in plants are poorly understood. To address this question, we performed a comprehensive epigenetic profiling in the genus Oryza with high quality BAC-assembled regional sequences and near gap-free genomes. Comparative analyses of a heterochromatin knob demonstrated the dynamics of chromatin states (heterochromatin versus euchromatin) among the Oryza species in a phylogenetic context. LTR (long-terminal repeat) retrotransposons are the main contributor (~99%) to heterochromatin diversity. Heterochromatin genes are distributed as ‘gene islands’ in heterochromatin, but heterochromatin hardly projects expression disturbance to them. Heterochromatin genes are almost free of H3K9me2 histone modifications in exons, and have similar gene structure and transposon invasion rate in introns to its orthologous euchromatin counterparts. Analyses of the rice HiC data verified the topological existence of ‘gene islands’ and demonstrated that ‘gene islands’ are less spatially co-localized with heterochromatin. By examining evolutionarily recent inserted genes in the Oryza species, we found that the active promoters of six inserted genes can elevate CHH (H=A, C, T) methylation at the insertion sites. Our results reveals that heterochromatin genes evolve as heterochromatin-insulated ‘gene islands’ to escape the repressive influence of heterochromatin, contrasting to the ‘integration’ model in Drosophila. We suggest that active gene promoters may contribute to this insulation by acting as an important heterochromatin-euchromatin boundary in plants.