Project description:The involvment of bile acids such as deoxycholic acid (DCA) in gastro-esophageal reflux disease and subsequent Barrett’s metaplsia has been postulated. This study examines gene expression induced by exposure to DCA in esophageal cells and may be utilised in cross-comparisons with data derived from gene expression studies of Barrett’s esophagus and associated adenocarcinoma.
Project description:The involvment of bile acids such as deoxycholic acid (DCA) in gastro-esophageal reflux disease and subsequent Barrettâs metaplsia has been postulated. This study examines gene expression induced by exposure to DCA in esophageal cells and may be utilised in cross-comparisons with data derived from gene expression studies of Barrettâs esophagus and associated adenocarcinoma. SKGT4 cells were exposed to 300um DCA over 24 hours in duplicate experiments including matched timepoint controls. RNA samples were taken at 4, 8, 12 and 24 hours from DCA (DCA) exposed and resting (REST) timepoint controls.
Project description:The involvment of bile acids such as deoxycholic acid (DCA) in gastro-esophageal reflux disease and subsequent Barrettâ??s metaplsia has been postulated. This study examines gene expression induced by exposure to DCA in esophageal cells and may be utilised in cross-comparisions with data derived from gene expression studies of Barrettâ??s esophagus and associated adenocarcinoma. Additionally this study may be used to assess divergence in response to bile acids by comparisons with similar study performed in SKGT4 barrett''s assocaited adenocarcinoma cell line. HET-1A cells were exposed to 300um DCA over 24 hours in duplicate experiments including matched timepoint controls
Project description:The involvment of bile acids such as deoxycholic acid (DCA) in gastro-esophageal reflux disease and subsequent Barrett’s metaplsia has been postulated. This study examines gene expression induced by exposure to DCA in esophageal cells and may be utilised in cross-comparisions with data derived from gene expression studies of Barrett’s esophagus and associated adenocarcinoma. Additionally this study may be used to assess divergence in response to bile acids by comparisons with similar study performed in SKGT4 barrett''s assocaited adenocarcinoma cell line.
Project description:The major aetiological risk factor for Barrett's oesophagus and oesophageal adenocarcinoma is gastroesophageal reflux. This study's aim was to identify genes involved in the celular response to reflux in vitro. The Barrettâ??s oesophagus cell line, CP-A hTERT, was exposed to media with acid, deoxycholic acid or a primary bile salt mixture. RNA expression was compared with controls on Affymetrix U133 Plus 2.0 arrays. In CP-A hTERT, the greatest number of changes in gene expression was observed after treatment with deoxycholic acid, pH 4.5; 152 genes were up-regulated at 2 hours (91 at 6 hours) and 10 down-regulated at 2 hours (34 at 6 hours). 12 genes were identified and were subsequently assessed in patients with non-erosive reflux disease, oesophagitis, Barrett's oesophagus and oesophageal adenocarcinoma; Background and Aims: The major etiological risk factor for Barrettâ??s esophagus and esophageal adenocarcinoma is gastro-esophageal reflux. This studyâ??s aim was to identify genes involved in the cellular response to components of reflux both in vitro and in patients with reflux-related disease. Methods: The Barrettâ??s cell line, CP-A hTERT, was exposed to media with acid, deoxycholic acid or a primary bile salt mixture. RNA expression was compared with controls on Affymetrix U133 Plus 2.0 arrays. 12 genes of interest were analysed by Real Time PCR both in cell line and biopsies from 110 patients with non-erosive reflux disease, esophagitis, Barrettâ??s esophagus and esophageal adenocarcinoma. Results: In CP-A hTERT, the greatest number of changes in gene expression was observed after treatment with deoxycholic acid, pH 4.5. Of 12 genes analysed in biopsies, 10 were significantly different between the 4 groups with the largest change for anterior gradient homolog 2, which may modulate p53 function. This had highest expression in biopsies from Barrettâ??s esophagus (median gene fold change for Barrettâ??s esophagus versus non-erosive reflux disease, 411.2 (95% CI 290.5-682.7; p<0.01); esophageal adenocarcinoma versus non-erosive reflux disease 68.1 (20.5-161.4; p<0.01)). In addition 4 genes associated with development/differentiation were upregulated in Barrettâ??s biopsies compared to those from non-erosive reflux disease (SEL1L, MFNG, CRIP1 and EFNA1). Conclusions: Novel genes have been identified, whose expression is altered after acid and bile exposure in vitro and in biopsies from patients with reflux related diseases. These genes may have utility as biomarkers of response to reflux and should be assessed in prospective studies. Experiment Overall Design: The Barrett's oesophagus cell line CP-A hTERT was treated with a 15 minute exposure of acid (pH 4.5), a mixture of primary bile acids (pH 4.5) or deoxycholic acid (pH 4.5). RNA extraction occurred in treatment and non-treated cells at 2 hours and 6 hours. The treatments were performed in duplicate on 2 different days. RNA was compared in each treatment to each control at the relevant time points, in a 2 x 2 manner by using Affymetrex U133 Plus 2.0 arrays. Results of 12 genes were confirmed by Real Time PCR and were subsequently assessed in patients with non-erosive reflux disease, oesophagitis, Barrett's oesophagus and oesophageal adenocarcinoma.
Project description:The major aetiological risk factor for Barrett's oesophagus and oesophageal adenocarcinoma is gastroesophageal reflux. This study's aim was to identify genes involved in the celular response to reflux in vitro. The Barrett’s oesophagus cell line, CP-A hTERT, was exposed to media with acid, deoxycholic acid or a primary bile salt mixture. RNA expression was compared with controls on Affymetrix U133 Plus 2.0 arrays. In CP-A hTERT, the greatest number of changes in gene expression was observed after treatment with deoxycholic acid, pH 4.5; 152 genes were up-regulated at 2 hours (91 at 6 hours) and 10 down-regulated at 2 hours (34 at 6 hours). 12 genes were identified and were subsequently assessed in patients with non-erosive reflux disease, oesophagitis, Barrett's oesophagus and oesophageal adenocarcinoma Background and Aims: The major etiological risk factor for Barrett’s esophagus and esophageal adenocarcinoma is gastro-esophageal reflux. This study’s aim was to identify genes involved in the cellular response to components of reflux both in vitro and in patients with reflux-related disease. Methods: The Barrett’s cell line, CP-A hTERT, was exposed to media with acid, deoxycholic acid or a primary bile salt mixture. RNA expression was compared with controls on Affymetrix U133 Plus 2.0 arrays. 12 genes of interest were analysed by Real Time PCR both in cell line and biopsies from 110 patients with non-erosive reflux disease, esophagitis, Barrett’s esophagus and esophageal adenocarcinoma. Results: In CP-A hTERT, the greatest number of changes in gene expression was observed after treatment with deoxycholic acid, pH 4.5. Of 12 genes analysed in biopsies, 10 were significantly different between the 4 groups with the largest change for anterior gradient homolog 2, which may modulate p53 function. This had highest expression in biopsies from Barrett’s esophagus (median gene fold change for Barrett’s esophagus versus non-erosive reflux disease, 411.2 (95% CI 290.5-682.7; p<0.01); esophageal adenocarcinoma versus non-erosive reflux disease 68.1 (20.5-161.4; p<0.01)). In addition 4 genes associated with development/differentiation were upregulated in Barrett’s biopsies compared to those from non-erosive reflux disease (SEL1L, MFNG, CRIP1 and EFNA1). Conclusions: Novel genes have been identified, whose expression is altered after acid and bile exposure in vitro and in biopsies from patients with reflux related diseases. These genes may have utility as biomarkers of response to reflux and should be assessed in prospective studies. Keywords: Acid (pH 4.5) and bile (mixture of primary bile salts or the secondary bile salt deoxycholic acid, both at pH 4.5) challenge to a Barrett's oesophagus cell line. RNA extraction at 2 and 6 hours. Comparison of treatment RNA to control (non-treatment) RNA,
Project description:Transcriptional profiling of adult esophageal epithelium comparing wild-type mice with Nrf2-/- mice with or without gastroesophageal reflux for 4 weeks. Goal was to determine the role of Nrf2 on the barrier function of mouse esophageal epithelium. Two-class comparisons. Wild-type/without reflux vs. Nrf2-/-/without reflux; Wild-type/gastric reflux vs. Nrf2-/-/gastric reflux; Wild-type/duodenal reflux vs. Nrf2-/-/duodenal reflux; Wild-type/mixed reflux vs. Nrf2-/-/mixed reflux. Biological replicates: 3 replicates for each group.
Project description:Non-Erosive Reflux Disease (NERD) is one of the most prominent and common forms of gastroesophageal reflux disease (GERD). We performed transcriptomic analysis (RNA sequencing) of esophageal biopsies from patients with NERD and healthy controls to increase understanding of complex cellular and molecular pathways in NERD.
Project description:Beyond acid suppression: Novel therapeutic targets for gastro-esophageal reflux disease based on a murine model (esophageal tissue)
Project description:Esophageal adenocarcinoma (EAC) has become a major concern in Western countries due to rapid rises in incidence coupled with very poor survival rates. One of the key risk factors for the development of this cancer is the presence of Barrett’s esophagus (BE), which is believed to form in response to repeated gastro-esophageal reflux. In this study we performed comparative, genome-wide expression profiling (using Illumina whole-genome Beadarray) on total RNA extracted from esophageal biopsy tissues from individuals with EAC, BE (in the absence of EAC) and those with normal squamous epithelium. We combined these data with publically accessible raw data from three similar studies to investigate key gene and ontology differences between these three tissue states. The results support the deduction that BE is a tissue with enhanced glycoprotein synthesis machinery (DPP4, ATP2A3, AGR2) designed to provide strong mucosal defenses aimed at resisting gastro-esophageal reflux. EAC exhibits the enhanced extracellular matrix remodeling (collagens, IGFBP7, PLAU) effects expected in an aggressive form of cancer, as well as evidence of reduced expression of genes associated with mucosal (MUC6, CA2, TFF1) and xenobiotic (AKR1C2, AKR1B10) defenses. When our results are compared to previous whole-genome expression profiling studies keratin, mucin, annexin and trefoil factor gene families are the most frequently represented gene families. Eleven genes identified here are also represented in at least 3 other profiling studies. We used these genes to discriminate squamous, BE and EAC within the two largest cohorts using a support vector machine leave one out cross validation analysis. While this method was satisfactory for discriminating squamous and BE, it demonstrates the need for more detailed investigations into profiling changes within BE leading to the progression towards EAC. A comparison of three esophageal biopsy groups from separate individuals: normal squamous (n=9), Barrett's esophagus without dysplasia (n=22) & adenocarcinoma (n=23). Adenocarcinoma samples overlap with members of DNA copy number analysis GEO series GSE10506 such that, in each case genomic DNA and total RNA were extracted from the same biopsy. The matching copy number data GEO samples IDs are noted in characteristics: Matching CN Sample ID